Правительство России

Об изменении требований к экологической безопасности автомобилей и двигателей к ним

Постановление от 30 июля 2014 года №730. Документ даёт возможность производителям автомобильной техники на переходный период с 1 января по 31 декабря 2015 года продолжить выпуск сертифицированной техники, соответствующей более мягким требованиям экологической безопасности, что позволит приспособиться к условиям работы в соответствии с техническим регламентом Таможенного союза «О безопасности колёсных транспортных средств».

Постановление от 30 июля 2014 года №730

Проект постановления «О внесении изменений в технический регламент “О требованиях к выбросам автомобильной техникой, выпускаемой в обращение на территории Российской Федерации, вредных (загрязняющих) веществ” и признании утратившим силу постановления Правительства Российской Федерации от 20 января 2012 года № 2» внесён Минпромторгом России в инициативном порядке.

Техническим регламентом «О требованиях к выбросам автомобильной техникой, выпускаемой в обращение на территории Российской Федерации, вредных (загрязняющих) веществ» (утверждён постановлением Правительства от 12 октября 2005 года №609, далее – технический регламент) регулируются вопросы установления технических требований к автомобильной технике и двигателям различных экологических классов. В соответствии с техническим регламентом с 1 января 2014 года на территории России в целях сертификации автомобильной техники и двигателей введён экологический класс 5.

Срок действия этого технического регламента и, соответственно, возможность получения сертификационных документов в отношении автомобильной техники и двигателей к ней ограничен 31 декабря 2014 года. После этого вступает в силу технический регламент Таможенного союза «О безопасности колёсных транспортных средств», в соответствии с которым будет сертифицироваться вновь выпускаемая в обращение автомобильная техника и двигатели к ней, в том числе в части экологической безопасности.

Внесёнными в технический регламент изменениями устанавливаются менее строгие требования к автомобильной технике и двигателям к ней в целях их сертификации, чем это было предусмотрено техническим регламентом. При этом действие сертификационных документов продляется до 31 декабря 2015 года.

Изменениями, в частности, предусматривается возможность:

— отключать на этапе производства функцию ограничения крутящего момента дизельных двигателей автобусов и грузовых автомобилей при несоответствии уровня выбросов эксплуатируемой техники установленным требованиям;

— получать сертификационные документы в отношении техники повышенной проходимости, соответствующей экологическому классу 4, и двигателей к ней;

— продлить действие сертификационных документов в отношении легковых автомобилей с контрольной массой менее 2840 кг, соответствующих экологическому классу 4, и двигателей к ним.

Кроме того, постановлением вводятся новые требования в отношении работающих на бензине автобусов и грузовых автомобилей, соответствующих экологическому классу 5, а также в отношении двигателей, работающих одновременно или поочерёдно на двух видах топлива.

Принятые решения дают возможность производителям автомобильной техники (в том числе расположенным на территории Таможенного союза) на переходный период с 1 января по 31 декабря 2015 года продолжить выпуск сертифицированной техники, соответствующей более мягким требованиям экологической безопасности, что позволит приспособиться к условиям работы в соответствии с техническим регламентом Таможенного союза «О безопасности колёсных транспортных средств».

Требования к экологической безопасности машин

Галерея
Форум

Экологическая безопасность автомобиля

Экологическая безопасность – это свойство автомобиля, позволяющее уменьшать вред, наносимый участникам движения и окружающей среде в процессе его нормальной эксплуатации. Мероприятиями по уменьшению вредного воздействия автомобилей на окружающую среду следует считать снижение токсичности отработавших газов и уровня шума.
Основными загрязняющими веществами при эксплуатации автотранспорта являются:
– выхлопные газы;
– нефтепродукты при их испарении;
– пыль;
– продукты истирания шин, тормозных колодок и дисков сцепления, асфальтовых и бетонных покрытий.

Влияние автомобилизации на окружающую среду

Ярким примером неблагоприятного влияния развития производства на окружающую среду может служить автомобилизация. Автомобили оказывают вредное воздействие на природу и человека, так как в отработанных продуктах содержатся опасные для здоровья и окружающей среды компоненты, при движении автомобилей возникает шум.
При дорожно-транспортных происшествиях наносится материальный ущерб (уничтожение и повреждение грузов, транспортных средств и сооружений) и возможны гибель и ранение людей. По данным Всемирной организации здравоохранения на автомобильных дорогах мира ежегодно гибнет (в том числе и от послеаварийных травм) свыше 900 тыс. человек, несколько миллионов становятся калеками, а свыше 10 млн. человек — получает травмы.
Автомобильные дороги и их инфраструктура отняли у человечества свыше 50 миллионов гектаров земли (такова суммарная территория таких стран, как ФРГ и Великобритания). Кроме того, дороги с интенсивным движением создают “разделяющий эффект”, затрудняя связи между объектами и участками живой природы, расположенными по разные стороны дороги. Дорожное строительство нарушает экологическое равновесие в природе вследствие изменения существующего ландшафта; усиления водной и ветровой эрозии; развития геодинамических процессов, например оползней и обвалов; загрязнения окружающей местности, поверхностных и грунтовых вод материалами и веществами, применяемыми при эксплуатации автомобилей и дороги; неблагоприятного воздействия на существующий растительный и животный мир.
Источником загрязнения и истощения окружающей среды стала как сама трасса, так и её инженерные сооружения, объекты обслуживания, особенно места хранения нефтепродуктов, автозаправочные станции, станции технического обслуживания, мойки и т.п.
При широком использовании автомобилей все возрастающее количество людей посещает ранее недоступные для них природные комплексы, что приводит к загрязнению отходами территорий, прилегающих к автомобильным дорогам, и других мест.
В отдельных городах и их агломерациях под воздействием автомобильного транспорта и других источников загрязнения образовались предельные экологические состояния, что препятствует устойчивому их развитию и требует кардинальных решений по улучшению их коммуникационной инфраструктуры.

Основными мероприятиями по предотвращению и уменьшению вредного воздействия автомобилей на окружающую среду следует считать:
1) разработку таких конструкций автомобилей, которые меньше загрязняли бы атмосферный воздух токсичными компонентами отработавших газов и создавали бы шум более низкого уровня;
2) совершенствование методов ремонта, обслуживания и эксплуатации автомобилей с целью снижения концентрации токсичных компонентов в отработавших газах, уровня шума, производимого автомобилями, и загрязнения окружающей среды эксплуатационными материалами;
3) соблюдение при проектировании и строительстве автомобильных дорог, инженерных сооружений, объектов обслуживания таких требований, как вписывание объекта в ландшафт; рациональное сочетание элементов плана и продольного профиля, обеспечивающее постоянство скорости движения автомобиля; защита поверхностных и грунтовых вод от загрязнения; борьба с водной и ветровой эрозией; предотвращение оползней и обвалов; сохранение животного и растительного мира; сокращение площадей, отводимых под строительство; защита зданий и сооружений вблизи дороги от вибраций; борьба с транспортным шумом и загрязнением воздуха; применение методов и технологии строительства, приносящих наименьший ущерб окружающей среде;
4) использование средств и методов организации и регулирования движения, обеспечивающих оптимальные режимы движения и характеристики транспортных потоков, сокращение остановок у светофоров, числа переключения передач и времени работы двигателей на неустановившихся режимах.

Загрязняющие вещества, появляющиеся при автомобилизации, и методы борьбы с ними

Основными загрязняющими веществами при эксплуатации автотранспорта, строительстве дорог и дорожных сооружений являются:
– выхлопные газы;
– нефтепродукты при их испарении;
– пыль;
– продукты истирания шин, тормозных колодок и дисков сцепления, асфальтовых и бетонных покрытий;
– противообледенительные соли и песок.

Наибольшему загрязнению подвержены территории, непосредственно прилегающие к трассам. Полоса загрязнения достигает 300 м и более.

Токсичность отработавших газов

Наибольший загрязняющий эффект из всего перечисленного оказывают отработавшие газы. Источники выбросов делятся на стационарные и передвижные. В наиболее моторизованных странах мира около 50% общей массы выбросов приходится на долю передвижных источников. При этом основная масса выбросов от передвижных источников в этих странах приходится на долю автомобилей.

К основным вредным компонентам отработавших газов автомобилей относятся окись углерода СО (сильное токсичное вещество), углеводороды СНх, окислы азота NOх (токсичны, вместе с углеводородами СН образует фотохимический смог), альдегиды (вредно действуют на нервную систему и органы дыхания), твердые частицы (сажа), окислы серы SOх, бензапирен, соли свинца (сильно действующие токсичные вещества). Отрицательное воздействие автомобиля на окружающую среду заключается не только в выделении токсичных веществ, но и в сжигании кислорода, так как для сгорания нефтепродуктов необходим кислород (ориентировочно 3,3 т кислорода на 1 т нефтепродуктов). Кроме воздействия на человека, загрязнение воздуха наносит вред сельскому хозяйству, многим материалам и изделиям. В настоящий момент в России действуют допустимые нормы по токсичности выхлопных газов Евро II (согласно Правилам №49, 83 ЕЭК ООН), введенные с 1 января 2001 г. В Европе этот стандарт действует с 1996 г., а нормы Евро III вступили в силу с 1 октября 2001 года. Требования Евро IV введены с 2005 года, Евро V – с 2008-го. Причем все они будут обязательны для российских транспортных средств, работающих за границей. Кроме того, если российский автомобиль выпущен после октября 2001 года, то он должен удовлетворять нормам Евро III. В Евро II регламентируемый уровень выбросов дизельных двигателей грузовых автомобилей полной массой свыше 3,5 т составляет (в г/кВт*ч): СО (окись углерода) – 4,0; СН (углеводороды) – 1,1; NОх (оксиды азота) – 7,0; РМ (твердые частицы) – 0,15. В Евро III требования к токсичности выхлопа ужесточаются – регламентируемый уровень выбросов дизельных двигателей грузовых автомобилей полной массой свыше 3,5 т составит (в г/кВт*ч): СО (окись углерода) — 2,0; СН (углеводороды) — 0,6; NОх (оксиды азота) — 5,0; РМ (твердые частицы) — 0,1. Для бензиновых двигателей легковых автомобилей уровень выбросов в г/км: CO – 2,3; CH – 0,2; NOх – 0,15. Требования Евро III уже сейчас могут выполнять практически все европейские двигатели. Приведем для сравнения нормы Евро IV для бензиновых двигателей легковых автомобилей (в г/км): CO – 1,0, CH – 0,10, NOх – 0,08.
Методы уменьшения загрязнения атмосферы отработавшими газами двигателей внутреннего сгорания можно разделить на две группы:
методы снижения токсичности выбросов;

Смотрите так же:  Мировой суд 4 воронеж

методы уменьшения объемов выбросов.
Методы снижения токсичности выбросов.

Методы, применяемые для снижения токсичности, можно разделить на четыре основные группы: изменение конструкции, рабочего процесса, технологии производства и специального регулирования двигателей внутреннего сгорания и их систем; применение другого вида топлива или изменение физико-химических свойств топлива; очистка выбросов от токсичных компонентов с помощью дополнительных устройств; замена традиционных двигателей новыми малотоксичными силовыми установками.

Методы первой группы включают многочисленные мероприятия по улучшению смесеобразования и обеднения смеси, дозирования и распределения ее по цилиндрам (электронные и электромеханические системы впрыска топлива, модифицированные быстропрогреваемые впускные клапаны, термостатирование воздуха, гомогенизация смеси).
Токсичность отработавших газов значительно уменьшается при применении бесконтактных транзисторных систем зажигания; карбюраторов с быстродействующими заслонками, пневматическим впрыском и электронным управлением; использовании форкамерно-факельных, процессов и послойного смесеобразования; установке устройств для рециркуляции отработавших газов, изменении формы камеры сгорания и впрыске в нее воды.
С помощью специальных регулировок (состава смеси, частоты вращения холостого хода, угла опережения зажигания и опережения впрыска топлива, времени перекрытия клапанов) можно уменьшить содержание токсичных компонентов в отработавших газах. Снижение выброса вредных компонентов можно достичь путем поддержания двигателя в чистоте и снижения загрязнения системы питания, отложений в газораспределительном механизме, всасывающей трубе.

Вторая группа методов имеет два основных направления: применение присадок к топливам, снижающих выброс свинца, серы, канцерогенных веществ, сажи и твердых частиц; перевод двигателей на другие виды топлива (пропан-бутан, природный газ, водород, воздух).

Третья группа методов – очистка выбросов от токсичных компонентов, производимая с помощью нейтрализаторов различных типов и очистителей, устанавливаемых на автомобили. Эти методы получили широкое распространение в ряде стран. Нейтрализаторы производят физико-химическую очистку выбросов (термические, каталитические, жидкостные, механические, улавливающие испарения топлива и картерных газов, комбинированные), а очистители осуществляют очистку воздуха на входе в двигатель и отработавших газов при выходе их из двигателя.

Распространенные в настоящее время бензиновые карбюраторные двигатели могут быть заменены двигателями других типов, отработавшие газы которых содержат меньше токсичных веществ: дизелями и особенно их малотоксичными модификациями; двигателями, работающими на газовом топливе; гибридной силовой установкой, в которой объединены двигатель внутреннего сгорания, генератор переменного тока, тяговый электромотор и аккумулятор (Toyota Prius); ротопоршневыми; газотурбинными. Могут применяться двигатели, которые вообще не дают вредных выхлопов: электрические; двигатели, работающие на водородном топливе или на сжатом воздухе (двигатель французского изобретателя Ги Негра). Теоретически могут быть применены комбинации ДВС с емкостным накопителем энергии на базе конденсаторов, а также паровые двигатели. Необходимо учитывать, что применение комплекса устройств, снижающих токсичность, в большинстве случаев значительно удорожает автомобиль (до 25%).

Методы уменьшения объемов выбросов.

Эти методы относятся в значительной степени к организационно-техническим мероприятиям. Уменьшение объемов выбросов может быть достигнуто соответствующей организацией транспортных потоков и оптимизацией их характеристик; рациональной организацией доставки пассажиров в городах и изменением типажа городского транспорта; формированием пассажиропотоков; целесообразной транспортной планировкой городов.

Токсичность продуктов истирания дисков сцепления, тормозных накладок и шин

В деталях и узлах автомобиля используются асбестовые материалы (прокладки, тормозные изделия и т.п.). В 80-е годы в Западной Европе был введен запрет на применение асбеста во фрикционных узлах сцеплений и тормозов. При этом наука не доказала, что асбест более вреден, чем его заменители.

Ученые из Медицинского научного центра профилактики и охраны здоровья проводили эксперименты с белыми крысами. Показано, что хризотил-асбест способен вызывать злокачественные образования. Но, к сожалению, и заменители асбеста – искусственные минеральные волокна (ИМВ) имеют такие же свойства. А недавно было признано, что ИМВ являются “вероятно” или “возможно” канцерогенными.
Россия также присоединилась к серии поправок Правил № 13,78 и 90 ЕЭК ООН. В этом документе имеются пункты, запрещающие использование асбеста на автотранспорте. Россия должна полностью отказаться от применения асбеста для автотранспортной техники к 2000 году. Тем самым для асбеста в транспортных отраслях закрывается и внутренний рынок.
Продукты истирания шин, включающих в свой состав сажу и силикон, действительно вредны, и некоторые фирмы-производители снижают вредное влияние шин на окружающую среду посредством использования кремневой основы или полимера, получаемого из сердцевины кукурузных початков (разработка итальянских химиков).

Шум от автомобилей и методы его уменьшения

При движении автомобиля шум создается двигателем внутреннего сгорания, шасси автомобиля (в основном механизмами трансмиссии и кузовом) и в результате взаимодействия шин с дорожным покрытием.
У технически исправного легкового автомобиля, имеющего небольшой пробег, основной источник шума – взаимодействие шин с дорожным покрытием, у грузового автомобиля шум шин составляет меньшую долю. В результате взаимодействия колеса с дорожным покрытием возникает шум, уровень и характеристики которого зависят от типа автомобиля, конструкции подвески, рисунка протектора, нагрузки на шину, ее жесткости и давления в ней.

Шум от работы двигателя внутреннего сгорания возникает во впускном тракте карбюратора и трубопроводе; в газораспределительном клапанном механизме в результате взаимодействия толкателей с клапанами; в зубчатых, а также в цепных и ременных передачах между коленчатым и распределительным валами; в системе охлаждения двигателя вследствие работы вентилятора, ременной передачи и водяного насоса; в выпускной системе. Шум возникает также в зубчатых зацеплениях коробки передач и ряде других второстепенных (по шуму) механизмов.

В элементах шасси технически исправного (нового) автомобиля и его кузове шум создается при работе механизмов трансмиссии элементах подвески и в результате обтекания кузова воздушным потоком при движении.

Шум, создаваемый отдельным автомобилем (автопоездом), регламентируется рядом нормативных документов, основными из которых являются Правила № 9 ЕЭК ООН. Шум выпускаемых отечественной автомобильной промышленностью транспортных средств в основном соответствует этим нормам. Фактически шум создают транспортные потоки, и уровень его может меняться от очень многих причин, основными из которых являются; техническое состояние, скорость движения и режимы движения автомобиля; тип и состояние дорожного покрытия; состав и характеристики транспортного потока, в котором движется автомобиль; градостроительные особенности магистрали. При исследовании влияния срока службы автомобиля на уровень создаваемого шума установлено, что он возрастает в среднем на 1,5– 2,5 дБ по шкале А в год. При этом по мере изнашивания автомобиля доминирующее значение приобретают шумы двигателя, трансмиссии, подвески и особенно кузова автомобиля.

Шум двигателя увеличивается из-за нарушения герметичности во впускном и выпускном трактах и изнашивания вращающихся деталей. Вследствие изнашивания сопряженных пар повышается шум в трансмиссии и подвеске. Особенно возрастает шум кузова из-за ослабления крепления его элементов и снижения общей жесткости конструкции, что неизбежно приводит к вибрации кузова. При движении на неустановившихся режимах также увеличивается шум двигателя и шасси, особенно при разгонах и торможениях автомобиля, что характерно для движения в городских условиях.

Методы снижения уровня шума автомобилей

Для снижения шума автомобиля, прежде всего, стремятся конструировать менее шумные механические узлы; уменьшать число процессов, сопровождающихся ударами; снижать величину неуравновешенных сил, скорости обтекания деталей газовыми струями, допуски сопрягаемых деталей; улучшать смазку; применять подшипники скольжения и бесшумные материалы. Кроме того, уменьшение шума автомобиля достигается применением шумопоглощающих и шумоизолирующих устройств.

Шум во впускном тракте двигателя может быть уменьшен с помощью воздухоочистителя специальной конструкции, имеющего резонансную и расширительную камеры, и конструкций впускных труб, уменьшающих скорости обтекания внутренних поверхностей потоком топливовоздушной смеси. Эти устройства позволяют снижать уровень шума впуска на 10–15 дБ по шкале А.

Уровень шума, при выпуске отработавших газов (при их истечении через выпускные клапаны), может достигать 120–130 дБ по шкале А. Чтобы уменьшить шум при выпуске, устанавливают активные или реактивные глушители. Наиболее распространенные простые и дешевые активные глушители представляют собой многокамерные каналы, внутренние стенки которых изготовлены из звукопоглощающих материалов. Звук гасится в результате трения отработавших газов о внутренние стенки. Чем больше длина глушителя и меньше сечение каналов, тем интенсивнее гасится звук.

Реактивные глушители представляют собой сочетание элементов различной акустической упругости; снижение шума в них происходит вследствие многократного отражения звука и возвращения его к источнику. Следует помнить, что чем эффективнее работает глушитель, тем больше уменьшается эффективная мощность двигателя. Эти потери могут достигать 15% и более. В процессе эксплуатации автомобилей необходимо тщательно следить за исправностью (прежде всего – герметичностью) впускного и выпускного трактов. Даже небольшая разгерметизация глушителя резко усиливает шум выпуска. Шум в трансмиссии, ходовой части и кузове нового исправного автомобиля может быть уменьшен путем конструктивных усовершенствований. В коробке передач применяются синхронизаторы, косозубые шестерни постоянного зацепления, блокирующие конусные кольца и ряд других конструктивных решений. Получают распространение промежуточные опоры карданного вала, гипоидные главные передачи, менее шумные подшипники. Совершенствуются элементы подвески. В конструкциях кузовов и кабин широко используются сварка, шумоизолирующие прокладки и покрытия. Шум в перечисленных выше частях и механизмах автомобилей может возникать и достигать значительных величин только при неисправностях отдельных узлов и деталей: поломке зубьев шестерни, коробления дисков сцепления, дисбалансе карданного вала, нарушении зазоров между зубчатыми колесами в главной передаче и т.д. Особенно резко возрастает шум автомобиля при неисправности различных элементов кузова. Основной путь устранения шума – правильная техническая эксплуатация автомобиля.

Смотрите так же:  Требования к расположению котла

Требования экологической безопасности

Безопасность производственного оборудования — свойство производственного оборудования сохранять соответствие требованиям безопасности труда при выполнении заданных функций в условиях, установленных нормативно — технической документацией. Безопасность производственного процесса — свойство производственного процесса сохранять соответствие требованиям безопасности труда в условиях, установленных нормативно — технической документацией.

Общие требования безопасности к производственному оборудованию и производственным процессам установлены ГОСТ 12.2.003-91 и ГОСТ 12.3.002-75. Безопасность производственных процессов в основном определяется безопасностью производственного оборудования.

Производственное оборудование должно отвечать следующим требованиям:

1) обеспечивать безопасность работающих при монтаже (демонтаже), вводе в эксплуатацию и эксплуатации как в случае автономного использования, так и в составе технологических комплексов при соблюдении требований (условий, правил), предусмотренных эксплуатационной документацией. Все машины и технические системы должны быть травмо-, пожаро- и взрывобезопасными; не являться источником выделения паров, газов, пыли в количествах, превышающих на рабочих местах установленные нормы; генерируемые ими шумы, вибрации, ультра- и инфразвук, производственные излучения не должны превышать допустимые уровни;
2) иметь органы управления и отображения информации, соответствующие эргономическими требованиям, и располагаться таким образом, чтобы пользование ими не приводило к повышенной утомляемости, являющейся одной из определяющих причин травматизма. В частности, органы управления должны быть в зоне досягаемости оператора; усилия, которые необходимо к ним прилагать, должны соответствовать физическим возможностям человека; рукоятки, штурвалы, педали, кнопки и тумблеры должны быть спрофилированы таким образом, чтобы они были максимально удобны в использовании. Число и различимость средств отображения информации должны учитывать возможности оператора по ее восприятию и не приводить к необходимости чрезмерной концентрации внимания;
3) иметь систему управления оборудованием, обеспечивающую надежное и безопасное ее функционирование на всех предусмотренных режимах работы оборудования и при всех внешних воздействиях в условиях эксплуатации. Система управления должна исключать создание опасных ситуаций из-за нарушения работающими последовательности управляющих действий.

Основными требованиями безопасности к производственным процессам являются следующие:

— устранение непосредственного контакта работающих с исходными материалами, полуфабрикатами, готовой продукцией и отходами производства, оказывающими вредное действие;
— замена технологических процессов и операций, связанных с возникновением травмоопасных и вредных производственных факторов, процессами и операциями, при которых указанные факторы отсутствуют или обладают меньшей интенсивностью;
— комплексная автоматизация и механизация производства, применение дистанционного управления технологическими процессами и операциями при наличии травмоопасных и вредных производственных факторов;
— герметизация оборудования;
— применение средств коллективной защиты работающих;
— рациональная организация труда и отдыха с целью профилактики монотонности и гиподинамии, а также ограничения тяжести труда;
— своевременное получение информации о возникновении опасных производственных факторов на отдельных технологических операциях;
— внедрение систем контроля и управления технологическим процессом, обеспечивающих защиту работающих и аварийное отключение производственного оборудования;
— своевременное удаление и обезжиривание отходов производства, являющихся источниками травмоопасных и вредных производственных факторов, обеспечение пожаровзрывобезопасности.

Кроме того, ГОСТ 12.3.003-75 устанавливает принципы безопасной организации производственных процессов, общие требования безопасности к производственным помещениям, площадкам, размещению производственного оборудования и организации рабочих мест, к хранению и транспортировке исходных материалов, готовой продукции и отходов производства, к профессиональному отбору и проверке знаний работающих, а также требования к применению работающими средств защиты.

При определении необходимых средств защиты руководствуются действующей системой стандартов безопасности труда (ССБТ) по видам производственных процессов и группам производственного оборудования, используемым в этих процессах.

В рамках системы ССБТ проводятся взаимная увязка, систематизация всей существующей нормативной и нормативно-технической документации по безопасности труда.

В стандартах подсистемы 2 ССБТ «Стандарты требований безопасности к производственному оборудованию» указываются средства коллективной защиты, применение которых необходимо в рассматриваемом производственном оборудовании. Во всех стандартах подсистемы 3 ССБТ «Стандарты требований безопасности к производственным процессам» имеется раздел «Требования к применению средств защиты работающих», определяющий перечень средств индивидуальной защиты.

Общие требования экологичности к производственному оборудованию и процессам установлены СН 1042-73 и стандартами системы «Охрана природы».

Основными нормативными показателями экологичности производственного оборудования и технологических процессов являются предельно допустимые выбросы в атмосферу, предельно допустимые сбросы (ПДС) в гидросферу и предельно допустимые энергетические воздействия (ПДЭВ).

Предельно допустимый выброс в атмосферу (ПДВ) – норматив, устанавливающий содержание загрязняющих веществ в приземном слое воздуха от источника или их совокупности, не превышающего нормативов качества воздуха для населенных мест. Норматив ПДВ направлен на ограничение выбросов и обусловлен тем, что при существующих методах сокращения отходов производства практически невозможно избежать проникновения в атмосферу вредных веществ, которые необходимо уменьшить до уровней, обеспечивающих соблюдение предельно допустимых концентраций (ПДК).

Нормы предельно допустимого сброса веществ в водный объект устанавливают с учетом ПДК веществ, загрязняющих водную среду в местах пользования, ассимилирующей способности водного объекта и оптимального распределения массы сбрасываемых веществ между водопользователями.

Нормативы ПДЭВ являются основой для проведения экологической экспертизы источника.

Реализация нормативных показателей источника достигается за счет его совершенствования на этапах проектирования, постановки на производство и эксплуатации.

Контроль учета требований безопасности производится на всех этапах с помощью экспертизы. Порядок экспертизы безопасности проектов на новую технику и технологии и выдачи на них заключений установлен Минтрудом РФ и проводится Государственной экспертизой условий труда с участием органов Санэпидемнадзора РФ, а в некоторых случаях и в других надзорных органах. Применительно к оборудованию и технологическим процессам, имеющим аналоги, как правило, производятся расчетная оценка ожидаемого уровня негативных факторов и сопоставление полученных величин с предельно допустимыми значениями. При создании опытных образцов определяются фактические значения воздействия этих факторов. Если эти значения превышают допустимые величины, установленные ССБТ, производится доработка оборудования за счет введения соответствующих средств защиты или повышения их эффективности.

Применительно к оборудованию и технологическим процессам, не имеющим аналогов, производится идентификация опасностей и связанных с их возникновением негативных факторов. Здесь для выявления производственных опасностей применяют метод моделирования с использованием диаграмм влияния причинно-следственных связей на реализацию этих опасностей.

Экологическая экспертиза техники, технологий, материалов включает отраслевую и государственную экспертизу. Отраслевая экологическая экспертиза проводится организациями, определенными в качестве головных, которые рассматривают документацию новой продукции или ее образцы. Государственная экологическая экспертиза осуществляется экспертными подразделениями органов государственного управления в области природопользования и охраны окружающей среды на республиканском и региональном уровне.

Экологическая экспертиза направлена на предупреждение возможного превышения допустимого уровня вредного воздействия на окружающую среду в процессе ее эксплуатации, переработки или уничтожения. Следовательно, главная задача экологической экспертизы заключается в определении полноты и достаточности мер по обеспечению требуемого уровня экологической безопасности новой продукции при ее разработке.

Такими мерами по обеспечению экологической безопасности могут быть:

— определение соответствия проектных решений создания новой продукции современным природоохранным требованиям;
— оценка полноты и эффективности мероприятий по предупреждению возможных аварийных ситуаций, связанных с производством и потреблением (использованием) новой продукции, и ликвидации их возможных последствий;
— оценка выбора средств и методов контроля воздействия продукции на состояние окружающей среды и использование природных ресурсов;
— оценка способов и средств утилизации или ликвидации продукции после отработки ресурса.

По результатам экологической экспертизы составляется экспертное заключение, включающее вводную, констатирующую и заключительную части.

В вводной части содержатся сведения об экспертируемых материалах, организации, их разработавшей, сведения о заказчике, органе, утверждающем указанные материалы.

В вводной части содержатся сведения об экспертируемых материалах, организации, их разработавшей, сведения о заказчике, органе, утверждающем указанные материалы. Здесь же приводятся данные об органе, осуществляющем экспертизу, и времени ее проведения.

В констатирующей части дается общая характеристика отражения экологических требований в представленном на экспертизу проекте.

Заключительная часть экспертного заключения содержит оценку всего комплекса мероприятий по рациональному использованию природных ресурсов и охране окружающей природной среды. Завершается эта часть рекомендациями к утверждению представленных материалов либо решением о направлении их на доработку. При возвращении на доработку должны быть конкретно сформулированы замечания и предложения по проектным решениям с указанием срока доработки и представления проекта на повторную экспертизу.

Экспертное заключение в полном объеме является обязательным для организаций — авторов проекта, заказчиков и других исполнителей.

Государственной экологической экспертизе предшествует (как правило) отраслевая экспертиза.

При постановке продукции на производство обязательно учитываются требования безопасности и экологичности, предусмотренные ГОСТ 15.001—88. Согласно данному стандарту проверка новых технических решений, обеспечивающих достижение новых потребительских свойств продукции, должна осуществляться при лабораторных, стендовых и других исследовательских испытаниях моделей, макетов, экспериментальных образцов продукции в условиях, имитирующих реальные условия эксплуатации.

Опытные образцы подвергают приемочным испытаниям, в которых независимо от места их проведения вправе принять участие изготовитель и органы, осуществляющие надзор за безопасностью, охраной здоровья и природы.

Оценку выполненной разработки и принятия решения о производстве и применении продукции проводит приемочная комиссия, в состав которой входят представители заказчика, разработчика, изготовителя и Государственной приемки. При необходимости к работе комиссии могут быть привлечены органы, осуществляющие надзор за безопасностью, эксперты сторонних организаций.

Для исключения возможности эксплуатации оборудования, не соответствующего требованиям безопасности, на предприятии проводится его проверка как перед вводом в эксплуатацию, так и в процессе эксплуатации. Новое оборудование и машины при поступлении на предприятие проходят входную экспертизу на соответствие требованиям безопасности.

В процессе эксплуатации оборудования ежегодно проводится проверка его соответствия требованиям безопасности и экологичности. Отдел главного механика и энергетика обязан ежегодно проводить проверку состояния всего парка станков, машин и агрегатов по техническим показателям, показателям безопасности, по результатам которых составляются планы ремонтов и модернизации.

Важнейшей составной частью по обеспечению экологичности оборудования и технологических процессов при эксплуатации является составление экологического паспорта предприятия согласно требованиям ГОСТ 17.0.0.004-90.

Экологический паспорт состоит из следующих разделов: титульный лист; общие сведения о предприятии и его реквизиты; краткая природно-климатическая характеристика района расположения предприятия; краткое описание технологии производства и сведения о продукции, балансовая схема материальных потоков; сведения о использовании земельных ресурсов; характеристика сырья, используемых материальных и энергетических ресурсов; характеристика выбросов в атмосферу; характеристика водопотребления и водоотведения; характеристика отходов, сведения о рекультивации нарушенных земель, сведения о транспорте предприятия, сведения об эколого-экономической деятельности предприятия.

Основой для разработки экологического паспорта являются основные показатели производства, проекты расчетов ПДВ, нормы ПДС, разрешение на природопользование, паспорта газо- и водоочистных сооружений и установок по утилизации и использованию отходов, формы государственной статистической отчетности и другие нормативные и нормативно-технические документы.

Экологический паспорт разрабатывается предприятием и утверждается его руководителем, согласуется с территориальным органом экологического надзора, где и регистрируется.

Хранится экологический паспорт на предприятии и в территориальном органе по охране окружающей природной среды.

Безопасность организации
Общественная безопасность
Экономическая безопасность
Информационная безопасность
Национальная безопасность
Транспортная безопасность

Назад | | Вверх

Требования к экологической безопасности машин

Проблема обеспечения экологической безопасности ок­ружающей среды и человека не может быть решена в отсутствии адекватных методов и показателей количественной оценки состоя­ния и качества главных.

На основе этих идей должны раз­ра­ба­ты­вать­ся нетрадиционные компоненты природной среды и соответствующие экосистемы. Требуется также организационное, научно-мето­дическое и информационное обеспечение, научно-методические принципы организации систем мониторинга и контроля качества окружающей среды. Новые информационные показатели и новые методы количественной оцен­ки уровня экологической безопасности [1, 6] являются результатом взаимодействия комплекса «водитель-автомобиль-дорога-среда» (ВАДС).

Чтобы повысить эффективность транспортного процесса, необходимо оптимизировать параметры, входящие в комплекс ВАДС систем и показатели их взаимодействия по единому критерию.

Простейшим является метод сравнения дорог и участков по количеству (ДТП) на 1 км. Его применяют для общей оценки условий движения на отдельных участках одной дороги, различных дорогах или сети дорог районов, регионов. Критерием оценки является отношение количества ДТП за год или несколько лет на дороге к ее протяженности. Этот метод не учитывает таких показателей, как интенсивность и скорость движения, геометрические параметры дорог, климатические условия, рельеф местности, активные зоны земной коры (геопатогенные зоны ГПЗ), солнечную радиацию и т.д.

В настоящее время наиболее эффективными являются методы, разработанные профессором В.Ф. Бабковым и его школой [5], в которых оценки условий безо­пасности движения осуществляются с помощью коэффициента аварийности и безопасности.

Указанный метод постоянно совершенствуется. Уточнению частных коэффициентов аварийности с целью возможно большего охвата всего разнообразия дорожных условий посвящен ряд исследований. В частности А.П. Шевяковым эта работа проведена применительно к автомаги- стралям.

Метод оценки условий безопасности движения с помощью коэффициента аварийности основан на анализе статистики дорожно-транспортных происшествий. Степень опасности по этому методу характеризуется итоговым коэффициентом аварийности, вычисляемым как произведение частных коэффициентов (1), учитывающих влияние интенсивности движения, элементов профиля дороги, состояния покрытия, характеристику застройки дорог и др.

где коэффициенты выражают отношение количества происшествий при той или иной величине элемента плана и профиля дороги к количеству происшествий на эталонном участке дороги.

Метод коэффициентов безопасности Kбез косвенно характеризует условия БД отношением скорости движения V, обеспечиваемой каким-либо KAB участком дороги, к максимальной скорости Vвх, с которой автомобиль может выехать на него с предшествующего участка (2):

Однако каждый из этих методов имеет свои особенности, влияние которых несколько уменьшается при одновременном использовании обоих методов. Так, метод с применением коэффициентов аварийности, позволяющий выделить и анализировать отдельные технические параметры и показатели дороги и определить степень влияния каждого из них на условиях БД, не позволяет полностью учесть влияние окружающей среды, в том числе региональных природно-климатических факторов, влияние активных зон земной коры, геопатогенные зоны (ГПЗ), солнечной радиации. Метод с применением коэффициента безопасности объективно отражает комплексное влияние на БД дорожных условий и окружающей среды, но не дает возможности анализировать влияние отдельных элементов этих условий, не позволяет достаточно надежно намечать необходимые мероприятия по повышению БД и очередности их выполнения. Указанное можно отнести и к коэффициентам относительной безопасности (обратная величина коэффициента аварийности), предложенным Н.Ф. Хорошиловым [5].

Методика выявления опасных участков на существующих дорогах, основанная на анализе статистики ДТП с учетом их вероятностного характера и нашедшая применение в Дании, Ирландии и Франции, хотя и используется для существующих дорог, также обладает рядом недостатков. К ним относится то, что с ее помощью выявляются только наиболее опасные участки из среднего, где необходимы многолетние наблюдения для получения достоверной статистики и др. [2].

Аналогичная методика была применена при исследовании аварийности в ряде штатов США. Для оценки опасных участков использовался критический уровень аварийности, вычисляемый по формуле:

где Rc — средний уровень аварийности по участкам с примерно равными техническими параметрами происшествий на 1 млн автомобиле — миль; N — средняя интенсивность движения, 1 млн автомобиле — миль; К — постоянная величина, равная 1,5.

Если уровень аварийности больше критического уровня Rp, то данный участок считается опасным [3, 4].

Большое число факторов учитывается в методах оценки транспортно-эксплуатационных качеств дорог, предложенных в Швеции, Англии, США. Эти методы включают в себя несколько групп показателей с предельно возможными значениями суммы баллов, характеризующих, наравне с прочностью и состоянием дорожной одежды, геометрические параметры дорог, безопасность и комфортабельность движения. Так, по предложенной в 1968 г. в Англии системе прочность свойства дорог оцениваются 50 баллами, безопасность 30, комфортабельность для движения — 20 баллами [5].

Однако в этих методах в комплекс оценок входит взаимно не связанные требования к дороге с точки зрения безопасности движения, не позволяющие совместить их на одном уровне в одном показателе.

На основании проделанного анализа можно сделать вывод, что существующие методы оценки БД носят односторонний характер. Они в основном только с точки зрения технических параметров характеризуют условия дороги и среды. При этом не всегда учитываются такие весомые факторы, как природно-климатические условия и активные зоны земной коры, солнечная радиация района проложения дороги, психофизиологические аспекты работы водителя и др., что уменьшает достоверность оценки условий безопасности движения.

Среди множества факторов дорожных условий, определяющих со­стояние аварийности на автомобильном транспорте, особенно выделяются природные, так называемые геопатогенные зоны (ГПЗ). Они соответствуют разло­мам земной коры, и их влияние на психофизиологию водителей особенно активно.

Так, сопоставление сведений о прохож­дении разломов земной коры по территории Краснодарского края и стати­стических данных о дорожно-транспортных происшествиях (ДТП) на участ­ках автомобильных дорог, проложенных в соответствующих геопатогенных зонах, показало наличие явных аномалий. По данной проблеме с 1991 г. по настоящее время нами проводятся научные исследования. Число ДТП на этих участ­ках намного превышает средний уровень аварийности на автодорогах края. Для выявления механизма влияния геопатогенных зон на аварийность дорожного движения была разработана методика исследований.

В результате выполненных исследований авторами установлено местоположение геопатогенных зон на указанных автомагистралях. Общее количество опасных участков на автомагистрали «Дон» составляет 46, а на автомагистрали «Кавказ» — 14, они совпадают с разломами земной коры. Построения карт изолиний того или иного изучаемого параметра природных явлений проводились по всей площади поверхности дороги одним и тем же методом. Для построения карт изолиний влияния геопатогенных зон (ГПЗ) использовался универсальный прибор ИГА-1 и биологической тест-системой (БТС), предложенной доктором медицинских наук профессором Л.В. Савиной. Представленная ею модель in vitro дает возможность оценить и функционально продемонстрировать воздействие десинхронизаторов и синхронизаторов внешней среды на хронобиологические процессы живых экосистем. Оценкой достоверностей полученных результатов является разработанная биологическая тест-система (БТС) профессора Л.В. Савиной, которая учитывает излучение (ГПЗ) и излучение тела человека, что подтверждено патентами РФ (№ 2178172, 2186522,2213964). Фактическая конкретность результатов исследования показана на рис. 1, 2, 3, где представлена нейтральная зона дороги и зона ГПЗ.

Рис. 1. Энергетическая структура (ЭС) нейтральной зоны дороги

Рис. 2. Участок № 5 автодороги «Дон» 1195

Сравнивая энергетическую структуру нейтральной зоны дороги с энергетическими структурами геопатогенных зон, даже визуально, видим коренное различие между ними.

На основе предложенной методики авторами установлена степень опасно­сти (в баллах) участков дорог, приходящихся на геопатогенные зоны, которые предлагается учитывать при проектировании, реконструкции и строительстве автодорог:

Практически не опасные условия от 10 до 20

Малоопасные условия от 30 до 90

Опасные условия от 100 до 200

Очень опасные условия от 200 до 1000

Рис. 3. Энергетическая структура ГПЗ участка № 5 автодороги «Дон» 1195 км (27-3-7)

Определен также показатель геопатогенной зоны (ГПЗ) дороги, её коэффициент (рис. 4),влияющие на условия движения автомобилей по дорогам. Для этих расчётов использовались:

S, L — длина и ширина участка геопатогенной зоны на дороге;

Т — время проезда автомобилем этой зоны;

Б — показания прибора в геопатогенной зоне;

V — скорость движения автомобиля;

А2 — число погибших в ДТП;

А3 — число раненых в ДТП;

Кс — коэффициент сложности условий движения.

Рис. 4 Участок дороги с ГПЗ разной категории сложности

Выявлены показатель опасности геопатогенных зон и коэффициент сложности участка дороги (таблица).

Требования к экологической безопасности машин