Пособие снип 20301

СТРОИТЕЛЬНЫЕ НОРМЫ И ПРАВИЛА

БЕТОННЫЕ И ЖЕЛЕЗОБЕТОННЫЕ

РАЗРАБОТАНЫ НИИЖБ Госстроя СССР (д-р техн. наук, проф. А. А. Гвоздев — руководитель темы; доктора техн. наук А. С. Залесов, Ю. П. Гуща; д-р техн. наук, проф. В. А. Клевцов; кандидаты техн. наук Е. А. Чистяков, Р. Л. Серых, Н. М. Мулин и Л. К. Руллэ) и ЦНИИпромзданий Госстроя СССР (И. К. Никитин ¾ руководитель темы; Б. Ф. Васильев).

ВНЕСЕНЫ НИИЖБ Госстроя СССР.

ПОДГОТОВЛЕНЫ К УТВЕРЖДЕНИЮ Управлением стандартизации и технических норм в строительстве Госстроя СССР (В. М. Скубко).

СНиП 2.03.01-84* является переизданием СНиП 2.03.01-84 с изменениями, утвержденными постановлениями Госстроя СССР от 8 июля 1988 г. № 132 и от 25 августа 1988 г. № 169.

Разделы, пункты, таблицы, формулы, приложения и подписи к рисункам, в которые внесены изменения, отмечены в настоящих строительных нормах и правилах звездочкой.

При пользовании нормативным документом следует учитывать утвержденные изменения строительных норм и правил и государственных стандартов, публикуемые в журнале Бюллетень строительной техники , Сборнике изменений к строительным нормам и правилам Госстроя СССР и информационном указателе Государственные стандарты СССР Госстандарта СССР.

Строительные нормы и правила

Бетонные и железобетонные

СНиП II-21-75 и СН 511-78

Настоящие нормы распространяются на проектирование бетонных и железобетонных конструкций зданий и сооружений различного назначения, работающих при систематическом воздействии температур не выше 50 ° С и не ниже минус 70 ° С.

Нормы устанавливают требования к проектиро­ванию бетонных и железобетонных конструкций, изготовляемых из тяжелого, мелкозернистого, легкого, ячеистого и поризованного бетонов, а также из напрягающего бетона.

Положения данных норм соответствуют СТ СЭВ 384-76.

Требования настоящих норм не распространяют­ся на бетонные и железобетонные конструкции гид­ротехнических сооружений, мостов, транспортных тоннелей, труб под насыпями, покрытий автомо­бильных дорог и аэродромов, армоцементные кон­струкции, а также конструкции, изготовляемые из батонов средней плотностью менее 500 и свыше 2500 кг/м 3 , бетонополимеров и полимербетонов, бетонов на известковых, шлаковых и смешанных вяжущих (кроме применения их в ячеистом бето­не), на гипсовом и специальных вяжущих, бетонов на специальных и органических заполнителях, бето­на крупнопористой структуры.

При проектировании бетонных и железобетонных конструкций, предназначенных для работы в осо­бых условиях эксплуатации (при сейсмических воз­действиях, в среде с агрессивной степенью воздействия на бетонные и железобетонные конструкции, в условиях повышенной влажности и т. п.), должны соблюдаться дополнительные требования, предъявляемые к таким конструкциям соответствующими нормативными документами.

По показателям прочности бетона приняты клас­сы бетона в соответствии с СТ СЭВ 1406-78.

Основные буквенные обозначения, принятые в настоящих нормах согласно СТ СЭВ 1565—79, приведены в справочном приложении 5 .

* Переиздание с изменениями на 1 января 1989 г.

1. ОБЩИЕ УКАЗАНИЯ

1.1. Бетонные и железобетонные конструкции, согласно СТ СЭВ 1406-78, должны быть обеспечены с требуемой надежностью от возникновения всех видов предельных состояний расчетом, выбором ма­териалов, назначением размеров и конструирова­нием.

1.2. Выбор конструктивных решений должен производиться исходя из технико-экономической целесообразности их применения в конкретных ус­ловиях строительства с учетом максимального сни­жения материалоемкости, энергоемкости, трудо­емкости и стоимости строительства, достигаемого путем:

применения эффективных строительных матери­алов и конструкций;

снижения веса конструкций;

наиболее полного использования физико-механи­ческих свойств материалов;

использования местных строительных материа­лов;

соблюдения требований по экономному расходо­ванию основных строительных материалов.

1.3. При проектировании зданий и сооружений должны приниматься конструктивные схемы, обес­печивающие необходимую прочность, устойчивость и пространственную неизменяемость зданий и сооружений в целом, а также отдельных конструк­ций на всех стадиях возведения и эксплуатации.

1.4. Элементы сборных конструкций должны отвечать условиям механизированного изготовле­ния на специализированных предприятиях.

от 20 августа 1984 г. № 136

1 января 1986 г.

При выборе элементов сборных конструкций должны предусматриваться преимущественно предварительно напряженные конструкции из высоко-прочных бетонов и арматуры, а также конструкции из легкого и ячеистого бетонов там, где их примене­ние не ограничивается требованиями других норма­тивных документов.

Целесообразно укрупнять элементы сборных конструкций, насколько это позволяют грузоподъ­емность монтажных механизмов, условия изготов­ления и транспортирования.

1.5. Для монолитных конструкций следует пре­дусматривать унифицированные размеры, позволяющие применять инвентарную опалубку, а также укрупненные пространственные арматурные каркасы.

1.6. В сборных конструкциях особое внимание должно быть обращено на прочность и долговеч­ность соединений.

Конструкции узлов и соединений элементов должны обеспечивать с помощью различных конст­руктивных и технологических мероприятий надеж­ную передачу усилий, прочность самих элементов в зоне стыка, а также связь дополнительно уложен­ного бетона в стыке с бетоном конструкции.

1.7. Бетонные элементы применяются:

а) преимущественно в конструкциях, работаю­щих на сжатие при малых эксцентриситетах про­дольной силы, не превышающих значений, указанных в п. 3.3;

б) в отдельных случаях в конструкциях, работа­ющих на сжатие с большими эксцентриситетами, а также в изгибаемых конструкциях, когда их разру­шение не представляет непосредственной опасности для жизни людей и сохранности оборудования (эле­менты, лежащие на сплошном основании, и др.).

Примечание. Конструкции рассматриваются как бетонные, если их прочность в стадии эксплуатации обеспечивается одним бетоном.

1.8. Расчетная зимняя температура наружного воздуха принимается как средняя температура воз­духа наиболее холодной пятидневки в зависимости от района строительства согласно СНиП 2.01.01-82. Расчетные технологические температуры устанавли­ваются заданием на проектирование.

Влажность воздуха окружающей среды определя­ется как средняя относительная влажность наружно­го воздуха наиболее жаркого месяца в зависимости от района строительства согласно СНиП 2.01.01-82 или как относительная влажность внутреннего воз­духа помещений отапливаемых зданий.

1.9. В настоящих нормах приняты буквенные обозначения основных величин, подлежащих приме­нению при проектировании строительных конструк­ций, а также индексы к буквенным обозначениям, установленные СТ СЭВ 1565—79.

ОСНОВНЫЕ РАСЧЕТНЫЕ ТРЕБОВАНИЯ

1.10. Бетонные и железобетонные конструкции должны удовлетворять требованиям расчета по не­сущей способности (предельные состояния первой группы) и по пригодности к нормальной эксплуа­тации (предельные состояния второй группы).

а) Расчет по предельным состояниям первой группы должен обеспечивать конструкции от:

хрупкого, вязкого или иного характера разру­шения (расчет по прочности с учетом в необходи­мых случаях прогиба конструкции перед разруше­нием);

потери устойчивости формы конструкции (рас­чет на устойчивость тонкостенных конструкций и т. д.) или ее положения (расчет на опрокидывание и скольжение подпорных стен; расчет на всплывание заглубленных или подземных резервуаров, на­сосных станций и т. п.);

усталостного разрушения (расчет на выносли­вость конструкций, находящихся под воздействием многократно повторяющейся нагрузки — подвиж­ной или пульсирующей: подкрановых балок, шпал, рамных фундаментов и перекрытий пол некоторые неуравновешенные машины и т. п.);

разрушения под совместным воздействием сило­вых факторов и неблагоприятных влияний внешней среды (периодического или постоянного воздейст­вия агрессивной среды, действия попеременного замораживания и оттаивания, воздействия пожара и т. п.).

б) Расчет по предельным состояниям второй группы должен обеспечивать конструкции от:

образования трещин, а также их чрезмерного или продол­жительного раскрытия (если по условиям эксплуатации образование или продолжительное раскрытие трещин недопустимо);

чрезмерных перемещений (прогибов, углов пере­коса и поворота, колебаний).

1.11. Расчет по предельным состояниям конст­рукции в целом, а также отдельных ее элементов должен, как правило, производиться для всех ста­дий — изготовления, транспортирования, возведения и эксплуатации, при этом расчетные схемы должны отвечать принятым конструктивным решениям.

Расчет по раскрытию трещин и по деформациям допускается не производить, если на основании опытной проверки или практики применения желе­зобетонных конструкций установлено, что раскры­тие в них трещин не превышает допустимых значе­ний и жесткость конструкций в стадии эксплуатации достаточна.

Смотрите так же:  Нотариус на фрунзе рязань

1.12*. Значения нагрузок и воздействий, коэффи­циентов надежности по нагрузке, коэффициентов сочетаний, а также подразделение нагрузок на посто­янные и временные должны приниматься в соответствии с требованиями СНиП 2.01.07-85.

Значения нагрузок необходимо умножить на ко­эффициенты надежности по назначению, принимаемые согласно „ Правилам учета степени ответствен­ности зданий и сооружений при проектировании конструкций», утвержденным Госстроем СССР.

Нагрузки, учитываемые при расчета по предель­ным состояниям второй группы (эксплуатацион­ные), следует принимать согласно указаниям пп. 1.16 и 1.20. При этом к длительным нагрузкам относится также часть полного значения кратковре­менных нагрузок, оговоренных в СНиП 2.01.07-85, а вводимую в расчет кратковременную нагрузку следует принимать уменьшенной на величину, учтен­ную в длительной нагрузке. Коэффициенты сочетаний и коэффициенты снижения нагрузок относятся к полному значению кратковременных нагрузок.

Для не защищенных от солнечной радиации конструкций, предназначенных для работы в климати­ческом подрайоне IVА согласно СНиП 2.01.01-82, при расчете должны учитываться температурные климатические воздействия.

Для бетонных и железобетонных конструкций должна быть также обеспечена их огнестойкость в соответствии с требованиями СНиП 2.01.02-85.

1.13. При расчете элементов сборных конструк­ций на воздействие усилий, возникающих при их подъеме, транспортировании и монтаже, нагрузку от веса элемента следует вводить с коэффициентом динамичности, равным:

при транспортировании . 1,60

„ подъеме и монтаже . 1,40

Для указанных коэффициентов динамичности допускается принимать более низкие значения, обоснованные в установленном порядке, но не ниже 1,25.

1.14. Сборно-монолитные конструкции, а также монолитные конструкции с несущей арматурой должны рассчитываться по прочности, образованию и раскрытию трещин и по деформациям для следую­щих двух стадий работы конструкций:

а) до приобретения бетоном, уложенным на мес­те использования конструкции, заданной прочнос­ти — на воздействие веса этого бетона и других на­грузок, действующих на данном этапе возведения конструкции;

6) после приобретения бетоном, уложенным на места использования конструкции, заданной проч­ности ¾ на нагрузки, действующие на данном этапе возведения и при эксплуатации конструкции.

1.15. Усилия в статически неопределимых же­лезобетонных конструкциях от нагрузок и вынуж­денных перемещении (вследствие изменения температуры, влажности бетона, смешения опор и т. п.), а также усилия в статически определимых конструкциях при расчете их по деформированной схеме следует, как правило, определять с учетом неупру­гих деформаций бетона и арматуры и наличия тре­щин.

Для конструкций, методика расчета которых с учетом неупругих свойств железобетона не разработана, а также для промежуточных стадий расчета с учетом неупругих свойств железобетона усилия в статически неопределимых конструкциях допуска­ется определять в предположении их линейной упругости.

1.16. К трещиностойкости конструкций (или их частей) предъявляются требования соответствую­щих категорий в зависимости от условий, в кото­рых они работают, и от вида применяемой арма­туры:

а) 1-я категория — не допускается образование трещин;

б) 2-я категория — допускается ограниченное по ширине непродолжительное раскрытие трещин acrc1 при условии обеспечения их последующего надежного закрытия (зажатия);

в) 3-я категория — допускается ограниченное по ширине непродолжительное acrc1 и продолжитель­ное acrc2 раскрытие трещин.

Под непродолжительным раскрытием трещин по­нимается их раскрытие при совместном действии постоянных, длительных и кратковременных нагру­зок, а под продолжительным — только постоянных и длительных нагрузок.

Категории требований к трещиностойкости желе­зобетонных конструкций, а также значения предель­но допустимой ширины раскрытия трещин в услови­ях неагрессивной среды приведены: для ограниче­ния проницаемости конструкций — в табл. 1, для обеспечения сохранности арматуры — в табл. 2*.

Эксплуатационные нагрузки, учитываемые при расчете железобетонных конструкций по образова­нию трещин, их раскрытию или закрытию, должны приниматься согласно табл. 3 .

Если в конструкциях или их частях, к трещино­стойкости которых предъявляются требования 2-й и 3-й категорий, трещины не образуются при соответ­ствующих нагрузках, указанных в табл. 3, их расчет по непродолжительному раскрытию и по закры­тию трещин (для 2-й категории) или по непродол­жительному и продолжительному раскрытию тре­щин (для 3-й категории) не производится.

Указанные категории требований к трещиностой­кости железобетонных конструкций относятся к трещинам, нормальным и наклонным к продольной оси элемента.

Категория требований к трещиностойкости железобетонных конструкций и предельно допустимая ширина acrc1 и acrc1 раскрытия трещин, мм, обеспечивающие ограничение проницаемости конструкций

1. Элементы, воспринимающие давление жидкостей и газов при сечении:

Фундаменты под колонны (к СНиП 2.03.01-84, 2.02.01-83)

Пособие по проектированию фундаментов на естественном основании под колонны зданий и сооружений

Предлагаем прочесть документ: Пособие по проектированию фундаментов на естественном основании под колонны зданий и сооружений. Если у Вас есть информация, что документ «Фундаменты под колонны (к СНиП 2.03.01-84, 2.02.01-83)» не является актуальным, просим написать об этом в редакцию сайта.

Пособие снип 20301

Сборно-монолитные плиты перекрытий рекомендуется армировать аналогично монолитным плитам; надопорную арматуру рекомендуется размещать в монолитном слое, пролетную — в скорлупе.
Размер скорлупы в плане рекомендуется назначать из условия Сборно-монолитные плиты перекрытий рекомендуется армировать аналогично монолитным плитам; надопорную арматуру рекомендуется размещать в монолитном слое, пролетную — в скорлупе. Размер скорлупы в плане рекомендуется назначать из условия обеспечения прочности и трещиностойкости бетона при ее изготовлении и монтаже. Стык скорлупы в перекрываемой ячейке не должен производиться в зоне максимальных моментов. В зоне стыка по скорлупам укладывается арматура площадью, эквивалентной изгибающему моменту, в расчетном сечении плиты с перепуском на длину не менее lсп, где lсп — расчетная длина анкеровки арматуры. Заведение скорлупы за грань стены производится на величину не менее 20 мм.
Совместная работа сборного и монолитного слоев перекрытия должна обеспечиваться сцеплением бетона и монтажными арматурными элементами, установленными в сборной плите-скорлупе.
Схема армирования сборно-монолитной плиты перекрытия показана на рис. 43.


Рис. 43. Сборно-монолитная плита
а схема армирования сборно-монолитной плиты, защемленной по контуру; б — конструктивное решение сборной плиты скорлупы без внешнего армирования; в то же, с внешним армированием
СВ — сетка верхнего армирования, ПС — плита-скорлупа
1 — монтажная петля, 2 — петлевые выпуски

Расчет железобетонных плит перекрытий

6.22. При расчете железобетонных плит перекрытий по предельным состояниям первой группы (по прочности) и второй группы (по деформациям, образованию и раскрытию трещин) рекомендуется различать плиты, работающие на изгиб из плоскости в одном и двух направлениях.
Плиты, опертые по контуру и имеющие соотношение размеров длинной стороны к короткой 3:1 и менее, а также плиты, опертые по трем сторонам и имеющие соотношение размеров вдоль параллельно расположенных опор к размеру вдоль свободного края 1,5:1 и менее, рекомендуется рассчитывать как работающие на изгиб из плоскости в двух направлениях. Расчет таких плит разрешается выполнять методами, изложенными в настоящем Пособии. При необходимости уточненный расчет таких плит может выполняться по специальным программам на ЭВМ, учитывающим нелинейную работу железобетона с трещинами.
Остальные плиты рекомендуется рассчитывать как работающие на изгиб в одном направлении по СНиП 2.03.01-84 и соответствующим пособиям.
6.23. Для плит, работающих на изгиб из плоскости в двух направлениях, различаются расчетные длины l1 и l2. Для плит, опертых по контуру, принимается, что пролет l1 не превышает пролет l2. Для плит, опертых по трем сторонам, пролет соответствует расстоянию между параллельно расположенными опорами (размер вдоль свободного края плиты).
Для свободно опертых плит расчетный пролет принимается равным расстоянию между серединами опорных площадок плит перекрытий. Для защемленных на опорах плит расчетный пролет принимается равным пролету в свету (до грани опор).
6.24. Для плит перекрытий, работающих на изгиб в двух направлениях, коэффициенты армирования (отношение площади сеченая арматуры к рабочей площади сечения плиты, перпендикулярного арматуре) 1 и 2 вдоль пролетов соответственно l1 и l2 рекомендуется назначать так, чтобы выполнялись условия:

Смотрите так же:  Пособие на второго ребенка в 2018 году до 3 лет

где min — минимальное значение коэффициента армирования, принимаемое по CHиП 2.03.01-84 равным 0,05 %.
Для железобетонных слабоармированных элементов, несущая способность которых исчерпывается одновременно с образованием трещин в бетоне растянутой зоны, площадь сечения продольной растянутой арматуры должна быть увеличена по сравнению с требуемой из расчета по прочности не менее чем на 15 % (по СНиП 20301-84).
6.25. При расчете плит перекрытий нагрузки от веса опирающихся на них ненесущих наружных стен и перегородок рекомендуется учитывать следующим образом:
для жестких ненесущих стен и перегородок в виде сборных бетонных и железобетонных панелей нагрузка от их веса прикладывается к плите в виде сосредоточенных сил, которые считаются расположенными:
для панелей без проемов, а также простенков панелей с проемами шириной более половины высоты этажа — на расстоянии 1/12 длины соответственно панели и простенка от их краев; для крайних простенков панелей с проемами шириной не более половины высоты этажа — на расстоянии 1/3 от наружного края простенка, а для средних простенков — по середине их длины;
для нежестких ненесущих стен и перегородок из каменной кладки, мелких блоков, листовых материалов 60 % нагрузки от их веса считается распределенной по длине простенков, а остальная часть в виде сосредоточенных сил, положение которых назначается аналогично нагрузке от жестких стен и перегородок.
Если в процессе эксплуатации здания возможно изменение положения перегородок, то нагрузку от веса рекомендуется задавать в виде распределенной нагрузки, эквивалентной наиболее неблагоприятной схеме расположения перегородок в конструктивной ячейке, но не менее 0,5 кН/м2 (50 кгс/м2).


Расчет железобетонных плит перекрытий по предельным состояниям первой группы

6.26. Сборные плиты, не имеющие специальных связей для обеспечения неразрезности на опорах, рассчитываются по прочности в предположении свободного (без защемления) их опирания на стены. Для плиты, работающей на изгиб из плоскости в двух направлениях, при платформенном стыке со стенами, разрешается считать, что углы плиты закреплены от подъема.
Монолитные плиты, а также сборные, имеющие специальные связи для обеспечения неразрезности на опорах, рекомендуется рассчитывать с учетом их защемления стенами на опорах. При этом для сборных и сборно-монолитных плит необходимо учитывать две стадии их работы: до и после устройства связей, обеспечивающих защемление плиты.
Расчет по прочности плит, работающих на изгиб из плоскости в двух направлениях, рекомендуется выполнять кинематическим способом метода предельного равновесия.
При расчете плит по прочности различают следующие случаи:
армирование плиты задано; требуется определить предельное по условиям прочности значение равномерно распределенной нагрузки на плиту ;
задана нагрузка на плиту; требуется определить требуемое армирование.
6.27. Для плиты с заданным армированием расчет по прочности выполняется в следующей последовательности:
выявляются расчетные сечения; для всех плит в качестве расчетных условно рассматриваются сечения, перпендикулярные пролетам l2 и проходящие через центр плиты; для плит с защемленными опорами также рассматриваются сечения вдоль этих опор, кроме того, должны быть рассмотрены сечения, где изменяется армирование плиты. Для многопустотных плит дополнительно рассматриваются сечения вдоль пустот, примыкающих к опорам;
определяются значения изгибающих моментов, воспринимаемых плитой по расчетным сечениям; при одностороннем армировании изгибающий момент для i-го сечения плиты определяется по формуле

(151)

где Rsi, Asi — соответственно расчетное сопротивление и площадь поперечного сечения продольной арматуры в i-м сечении плиты; hoi — рабочая высота сечения; Rb расчетное сопротивление бетона плиты сжатию (призменная прочность); di — длина плиты вдоль сечения i;
намечается схема излома плиты в предельном состоянии и определяются углы наклона линий излома по отношению к стороне плиты вдоль пролета l2; для свободно опертых и защемленных по контуру плит схемы излома рекомендуется принимать соответственно по рис. 44 и 45, при этом угол наклона линий излома к сторонам вдоль пролета допускается принимать равным 45°. Для свободно опертых по трем сторонам плит рекомендуется рассматривать две схемы излома (рис, 44, б, в), при этом для плит с соотношением сторон l2/l2 l допускается принимать, что угол = 45°;



Pис. 44. Расчетные схемы излома свободно опертой плиты
а — опертой по контуру; б, в — опертой по трем сторонам


Рис. 45. Расчетные схемы излома плиты, защемленной по контуру (а) и трем сторонам (б)
1, 2, 3 расчетные сечения при определении нагрузки образования трещин

определяется предельное значение равномерно распределенной нагрузки на плиты ;
нагрузка сопоставляется с расчетной нагрузкой на плиту

Пособие к СНиП 2.03.01-84

Проектирование железобетонных сборно-монолитных конструкций


Если возникли проблемы с файлом (нет на сервере, не открывается и проч.), напишите это в комментариях.

Предварительно напряженные ЖБК (к СНиП 2.03.01-84)

Пособие по проектированию предварительно напряженных железобетонных конструкций из тяжелых и легких бетонов. Часть 1

На нашем сайте можно бесплатно скачать Руководящий документ Предварительно напряженные ЖБК (к СНиП 2.03.01-84) в удобном формате. Узнать актуальный статус документа «Пособие по проектированию предварительно напряженных железобетонных конструкций из тяжелых и легких бетонов. Часть 1» на 2016 год.

Справочное пособие к СНиП. Проектирование сооружений для очистки сточных вод

(текст документа с изменениями и дополнениями на ноябрь 2014 года)

В ряде случаев для стабилизации показателя pH очищенной воды или глубокого обессоливания ее и удаления анионов слабых кислот вместо анионитовых фильтров второй ступени или после них используют фильтры смешанного действия (ФСД), загружаемые сильнокислотными катионитами и анионитами (рис. 20, д).

Содержание взвешенных веществ в воде, поступающей на ионообменные фильтры, не должно превышать 8 мг/л. Величина ХПК не должна быть более 8 мг О/л. В противном случае в схему ионообменной установки включаются сооружения предочистки с механическими и сорбционными фильтрами (рис. 20, е).

В зависимости от конкретных условий возможны и другие компоновки ионообменных установок с включением различного количества ступеней катионирования и анионирования и возможным чередованием их. При наличии в сточных водах сложных смесей катионов большое значение имеет селективное их поглощение катионитами.

Для определения наименее сорбируемых катионов при обмене на сильнокислотном катионите КУ-2 следует принимать во внимание ряд катионов по энергии их вытеснения друг другом

.

При обмене на слабокислотном катионите КБ-4 установлен следующий ряд катионов:

.

Установлен аналогичный ряд поглощения анионов сильных кислот на и анионитах

.

Анионы слабых кислот по сродству к анионитам образуют следующий ряд: силикаты Расчет расхода реагентов произведен на соляную кислоту 31%-ную; гидроксид натрия 100%-ный; известь гашеную 50%-ную по активному CaO.

Элюаты от регенерации катионитовых и анионитовых фильтров подвергаются реагентной обработке вместе с отработанными концентрированными технологическими растворами. Количество сбрасываемых кислых элюатов от регенерации катионитовых фильтров 5,8 м3/сут. Количество сбрасываемых щелочных элюатов от регенерации анионитовых фильтров 11 м3/сут. Сброс кислоты с элюатами 10,59 кг-экв/сут.

Сброс щелочей с элюатами 7,24 кг-экв/сут. Избыток кислот составляет 3,35 кг-экв/сут. Расход активного CaO на нейтрализацию избытка кислоты 3,35 кг-экв/сут, или 3,35 x 28 = 93,8 кг/сут. В расчете на товарную 50%-ную известь с учетом 5% избытка расход ее составит 197 кг/сут.

При дозировании 5%-ного по активному CaO известкового молока расход ее составит приблизительно 2 м3/сут.

Установки для электрохимической очистки сточных вод

Электролизеры для обработки циансодержащих сточных вод

3.21. Электролизеры для обработки сточных вод, относящиеся к нестандартному оборудованию, представляют собой открытые или со съемной крышкой прямоугольные стальные резервуары, разделенные с помощью перегородок из синтетических материалов на несколько отсеков. В перегородках проделываются несколько рядов отверстий, суммарная площадь которых составляет 20 — 30% площади находящейся в воде части перегородки, высота которой соответствует высоте погруженных в воду электродов.

Смотрите так же:  Когда вступает в силу приказ 1408

Движение потока сточных вод в электролизере происходит вдоль поверхности электродов в горизонтальном направлении. Электролизер снабжается приемной и сборной камерами, также отделенными от его рабочего пространства дырчатыми перегородками. На дно электролизера (в каждом из отсеков) укладывают дырчатые трубки из синтетических материалов, через которые поступает сжатый воздух, который, барботируя через жидкость, способствует ее перемешиванию.

В электролизер помещаются электроды двух типов: стальные катоды (в виде пластин толщиной 1 — 2 мм) и аноды из графитированного угля в виде плит или стержней. Можно использовать малоизнашивающиеся титановые аноды с металлоксидным покрытием (диоксид рутения, магнетит и др.). Ориентировочный срок службы анодов из графитированного угля составляет 4 — 5 мес. При обработке медьсодержащих сточных вод целесообразно использование медных катодов для облегчения утилизации дополнительно извлекаемой из сточных вод (в виде катодного осадка) металлической меди.

При определении габаритов электролизера необходимо учитывать объем постоянно находящейся в нем воды, а также объем, занимаемый перегородками, электродами (размеры плит из графитированного угля, выпускаемых отечественными электродными заводами, составляют 1000 x 180 x 50 мм). Расстояние между соседними электродами (катодом и анодом) следует принимать в пределах 40 — 50 мм.

Электроды обоих видов (катоды и аноды) подвешиваются в электролизере на медных (латунных) стержнях (токоподводах), концы которых покоятся на соответствующих катодных (анодных) шинах, укладываемых на изоляторах вдоль бортов электролизера. Аноды из графитированного угля (в виде плит) можно устанавливать на дно электролизера, футерованное материалом — диэлектриком. Сечение токоподводов и электродных шин рассчитывается на максимальную токовую нагрузку.

При значительной расчетной величине тока в электрической цепи (более 3000 А) и необходимости отведения больших количеств выделяющихся газообразных продуктов электролиза рекомендуется установка нескольких электролизеров, снабженных автономными источниками электропитания.

Технологическая схема электрохимической очистки циансодержащих сточных вод включает: двухсекционный резервуар-усреднитель (каждая секция усреднителя рассчитана на часовой расход сточных вод); электролизер; источник постоянного электрического тока (выпрямитель переменного электрического тока типа ВАКГ или ВАКР); бак для приготовления раствора поваренной соли; бак для приготовления раствора щелочного реагента (едкий натр, сода), используемого для корректировки исходной величины pH обрабатываемой воды (в случае необходимости); сборный бак для очищенной воды.

К сточным водам, находящимся в резервуаре-усреднителе, добавляют насыщенный раствор поваренной соли для достижения ее концентрации в воде в пределах 5 — 10 г/л и раствор щелочного реагента (в случае необходимости) до величины pH >= 10. При наличии высококонцентрированных циансодержащих сточных вод (отработанных технологических растворов) следует предусмотреть дополнительный бак для их сбора с последующим равномерным добавлением к сточным водам, поступающим в резервуар-усреднитель, до достижения расчетной концентрации цианидов не более 1 г/л.

Широкий выбор марок стали: AISI 321, 310, 409, 430

Под термином «нержавеющая сталь» подразумевается композиционная высоколегированная сталь, устойчивая к коррозии как в атмосферных условиях, так и в агрессивных средах. Устойчивость стали к коррозии достигается введением в ее состав элементов, образующих на поверхности плотные, прочно связанные с основой защитные пленки, которые препятствуют непосредственному контакту с агрессивной средой, а также повышают электрохимический потенциал стали в данной среде.
Однако нержавеющие стали бывают разные. Существует более 200 различных марок. И для изготовления дымоходов из стали подходят далеко не все.

Описание марок стали

Марка AISI 321 (Российский аналог по ГОСТ 08Х18Н10Т) — коррозионностойкая, жаростойкая, жаропрочная сталь. Неустойчива в серосодержащих средах. Рекомендуемая температура применения 600-800°С, при этом срок работы весьма длительный. AISI 321 не подвергается межкристаллитной коррозии даже при сварке в мягко-коррозийных средах благодаря добавлению титана для образования твердого сплава. Однако, сваренная 321 никогда не должена использоваться в высоко окисляющих окружающих средах.

Сталь AISI 321 применяют в оборудовании для нефтеперерабатывающей промышленности, химическом оборудовании и оборудовании, устойчивом к высоким температурам. Также AISI 321 применяется для изготовления сварного оборудования в разных отраслях промышленности (трубы, теплообменники, детали печной арматуры, реторты, муфели, коллекторы и патрубки выхлопных систем, электроды искровых зажигательных свечей). Марка AISI 321 имеет также широкое применение в пищевой, текстильной, фармацевтической и бумажной промышленности.

Марка 310 AISI (Российский аналог 310S AISI по ГОСТ — 20Х23Н18, 310 AISI – 20Х25Н20С2) является жаростойкой жаропрочной сталью. Высокое содержание хрома и никеля придают стали превосходное сопротивление окислению, так же как высокую прочность в высоких температурах. Этот сорт также очень податлив, и имеет хорошую свариваемость – что обусловливает его широкое применение. Применяется для изготовления деталей установок для конверсии метана, пиролиза и др. в химической и нефтяной промышленности, газопроводов, камер сгорания. Может применяться для нагревательных элементов сопротивления. Рекомендуемая температура применения 1000°С. В интервале 600-800°С склонна к охрупчиванию. Температура начала интенсивного окалинообразования 1050°С.

Марка 310S AISI является низко-углеродистой версией 310 и предложена для использования, где возможна коррозия высоко-температурными газами или конденсатами.

Сталь марки AISI 310 применяется в установках для термической обработки и при гидрогенизации, а также теплообменниках для печей, изготовлении дверей, штифтов, кронштейнов, деталей установок для конверсии метана, газопроводов, камер сгорания. Сталь марки AISI 310 может применяться как материал для нагревательных элементов в производстве подогревателей воздуха, а также как материал для конвейерных лент в транспортерах печей, отводных трубах газовых турбин и моторов. Изделия из такой стали можно по праву назвать «вечными».

Марка AISI 409 (Российский аналог по ГОСТ: AISI 409 — 08Х13) это стабилизированная титаном жаростойкая коррозионностойкая сталь. Она содержит сверхмалое количество углерода (0,03%), хорошо сваривается, не склонна к межкристаллитной коррозии и, обладая улучшенными свойствами по сравнению со сталью 08Х13, может успешно ее заменять. В ней хорошо сочетаются высокие прочностные и механические свойства, коррозионная стойкость (в том числе атмосферная) и обрабатываемость (хорошая пластическая деформируемость; применимость к процессам вытяжки, штамповки, перфорации в ней отверстий и т.п.).

Может быть использована для изготовления технологического оборудования, применяемого на различных этапах пищевого производства (мойка или гигиеническая обработка сырья, продуктов и оборудования, измельчение, разделение и сортировка продукции, смешивание, тепловая обработка, расфасовка и упаковка, транспортировка и т.д.). Области промышленного применения стали AISI 409: гражданское машиностроение; архитектура и дизайн; пищевая промышленность; автомобилестроение (системы выхлопа и т.п.); изготовление контейнеров; химическое и нефтехимическое производство (заменитель стали 08Х13) и пр. Содержание титана в этих марках нержавеющих сталей дает возможность применять их для изготовления внутренних труб дымоходов, которые устанавливаются на твердотопливное отопительное оборудование (камины, печи, топки и т. д.). При высоких температурах титан препятствует выгоранию углерода и исключает коррозию. Для жидкотопливного и газового отопительного оборудования дымоходы из этих марок нержавеющих сталей применяться, к сожалению, не могут, потому что они не являются кислотостойкими.

Марка AISI 430 (Российский аналог по ГОСТ 12Х17) сочетает в себе высокие прочностные и механические свойства, высокая коррозийная стойкость благодаря высокому содержанию хрома и низкому содержанию углерода. Нержавеющий лист AISI 430 не только может быть использован в качестве заменителя никельсодержащего стального листа, но и, превосходя последний по ряду свойств, часто оказывается незаменимым при производстве оборудования пищевой промышленности.

Пособие снип 20301