Эльфат Михайлович Галеев

Данное пособие по погдоготовке к вступительным экзаменам по математике предназначено для абитуриентов ВУЗов с повышенными требованиями по математике при подготовке к письменному и устному экзамену, для слушателей подготовительных отделений и курсов, учащихся математических классов и школ. В то же время знания приведенных приемов решения задач окажутся полезными и для любого школьника.

В пособии систематизируются типы встречающихся задач и методы их решений. Схема решений задач определенного вида подобрана таким образом, чтобы решение было наиболее простым и естественным. Иногда эти схемы могут отличаться от тех, что давались в школе, но, тем не менее, имеет смысл разобраться в них, понять, что заложенные в них идеи помогают приобрести более общий взгляд на уже известные факты, учат наиболее простым методам решений задач. Систематизация помогает определить, к какому типу задач относится данная задача и оптимальную схему ее решения. Это помогает более легкому усвоению материала, лучшему запоминанию.

Пособие состоит из Пяти частей . Каждая часть разбита на параграфы, параграфы делятся на пункты по типам (видам) задач. В начале параграфов приводятся краткие сведения об изучаемых понятиях, основные формулы , используемые при решении задач. Предполагается, что читатель уже знаком со школьной программой, собирается углубить имеющиеся у него знания и научиться правильным подходам и схемам решений уравнений и неравенств.

В Первой части пособия рассматриваются рациональные неравенства, уравнения высших степеней, уравнения и неравенства с модулем. Книга состоит из четырех параграфов: рациональные неравенства (метод интервалов), уравнения высших степеней, уравнения с модулем, неравенства с модулем.

Во Второй части рассматриваются иррациональные уравнения и неравенства, показательные уравнения и неравенства, логарифмические уравнения и неравенства. Книга состоит из шести параграфов: иррациональные уравнения, иррациональные неравенства, показательные уравнения, показательные неравенства, логарифмические уравнения, логарифмические неравенства.

Третья часть содержит шесть параграфов: тригонометрические преобразования, уравнения, неравенства, арифметические и геометрические прогрессии, текстовые задачи.

Материал Четвертой части пособия состоит из пяти параграфов: уравнения с параметрами, неравенства с параметрами, доказательство неравенств, системы уравнений, целочисленные задачи.

Пятая часть разделена два параграфа: планиметрия и стереометрия. Параграф «Планиметрия» делится на пункты: основные и дополнительные теоремы, задачи на вычисления, на нахождение максимумов и минимумов геометрических величин, использование векторов и метода координат. Задачи на вычисления разделяются на задачи на прямоугольные, равнобедренные треугольники, окружности, параллелограммы, трапеции и многоугольники.

Пособие по математике для поступающих в мгу

ПОДГОТОВКА ПО МАТЕМАТИКЕ
поступающим в МГУ имени М.В.Ломоносова

  • Математический кружок для 8-9кл.: развитие способностей/увлеченности решать нестандартные, логические, интересные задачи.
  • Подготовка к математическим олимпиадам «Ломоносов»,«Покори Воробьевы горы».
  • Подготовка к сдаче Основного государственного экзамена выпускников 9 классов (ОГЭ).
  • Подготовка к сдаче Единого государственного экзамена (ЕГЭ).
  • Подготовка к сдаче Дополнительных вступительных испытаний(ДВИ) в МГУ имени М.В.Ломоносова.

Большой объем заданий, авторские методички для самостоятельной работы (подборка материалов/задач
по экзаменам в МГУ с 1965г.), высокий уровень подготовки.

Опыт преподавания ученикам с 1972г.(будучи еще на 1-м курсе ВМК), абитуриентам с 1973г.
Опыт приема вступительных экзаменов в МГУ (в качестве проверяющего работы) с 1980г.
по настоящее время.
Обращаться к преподавателю.

Высылаемая электронка (для абитуриентов):

  1. Под редакцией А.Л.Семенова, И.В.Ященко. МАТЕМАТИКА. 2011г.(10вариантов).
  2. ЕГЭ 2012. Математика. Типовые тест. задания под ред. А.Л.Семенова, И.В.Ященко 2012г.
  3. ЕГЭ-2012. Математика. Типов. экзам. вар-ты. 30 вариантов. Под ред. А.Л.Семенова, И.В.Ященко, 2012г.
  4. ЕГЭ 2011. Математика. Практикум по выполнению типовых тестовых заданий ЕГЭ. Лаппо Л.Д., Попов М.А. (2011, 64с.)
  5. ЕГЭ 2011. Математика. Типовые тестовые задания. Под ред. Семенова А.Л., Ященко И.В. (2011, 56с.) (Сб.1)
  6. ЕГЭ 2011. Математика. Типовые тестовые задания. Под ред. Семенова А.Л., Ященко И.В. (2011, 56с.) (Сб.2)
  7. ЕГЭ 2011. Математика. Типовые тестовые задания. Под ред. Семенова А.Л., Ященко И.В. (2011, 64с.) (Сб.3)
  8. Математика. ЕГЭ 2011. Контр. трениров. материалы с ответами и коммент._Нейман Ю.М. и др_2011 -96с
  9. Самое полное изд. тип. вариантов заданий ЕГЭ 2011. Математика_Высоцкий, Гущин, Захаров и др_2011 -96с
  10. ЕГЭ. Математика. Задания типа С — Сергеев И.Н. — 2009 — 320с
  11. ЕГЭ 2011. Математика. Задача С3 — Сергеев И.Н., Панферов В.С. 2011 -72с Шевкин А.В., Пукас Ю.О. ЕГЭ. Математика. Задание С6. 2011г.
  12. Высоцкий И.Р., Ященко И.В. ЕГЭ 2012. Математика. Задача В10. Теория вероятностей.
  13. Корянов А.Г. МАТЕМАТИКА ЕГЭ 2010. Задания С6.
  14. И.Н.Сергеев. МАТЕМАТИКА.Задачи с ответами и решениями. 2004г.
  15. Панферов B.C., Сергеев И.Н. Отличник ЕГЭ. Математика. Решение сложных задач. 2010, 80с.
  16. И.Н.Сергеев. 1000 ВОПРОСОВ И ОТВЕТОВ. МАТЕМАТИКА.
  17. А.И.Козко, В.Г.Чирский. Задачи с параметром и другие сложные задачи.
  18. Е.А.Ефимов, Л.В.Коломиец. ЗАДАЧИ С ПАРАМЕТРАМИ.
  19. Ю.Н.Макарычев,Н.Г.Миндюк. Дополнительные главы к школьному учебнику. Алгебра.
  20. Вавилов В.В., Мельников И.И., Олехник С.Н., Пасиченко П.И. Задачи по математике. Начала анализа.
  21. Вавилов В.В., Мельников И.И., Олехник С.Н., Пасиченко П.И. ЗАДАЧИ ПО МАТЕМАТИКЕ. Уравнения и неравенства.
  22. Олехник С.Н., Потапов М.К., Пасиченко П.И. Алгебра и начала анализа. Уравнения и неравенства.
  23. под ред. М.И.Сканави. СБОРНИК ЗАДАЧ ПО МАТЕМАТИКЕ ДЛЯ ПОСТУПАЮЩИХ ВО ВТУЗЫ (С РЕШЕНИЯМИ). Кн.1. Алгебра.
  24. под ред. М.И.Сканави. СБОРНИК ЗАДАЧ ПО МАТЕМАТИКЕ ДЛЯ ПОСТУПАЮЩИХ ВО ВТУЗЫ (С РЕШЕНИЯМИ). Кн.2. Геометрия.
  25. А.Д.АЛЕКСАНДРОВ, А.Л.ВЕРНЕР, В.И.РЫЖИК. ГЕОМЕТРИЯ. Учебник для 10 класса с углубленным изучением математики.
  26. А.Ю.КАПИНИН, .Д.А.ТЕРЕШИН. СТЕРЕОМЕТРИЯ 10 (для классов с углубленным изучением математики).
  27. В.В.ПРАСОЛОВ. ЗАДАЧИ ПО ПЛАНИМЕТРИИ. 5-е издание, исправленное и дополненное.
  28. ЕГЭ 2010. Математика. Задача С2 — Смирнов В.А — 2010 — 64с
  29. ЕГЭ 2010. Математика. Задача С4 — Гордин Р.К — 2010 — 148с.

Печатные издания для поступающих в МГУ:

  1. Задачи вступительных экзаменов по математике в МГУ им. М.В. Ломоносова (1977-2007г.г.)
  2. Вступительные испытания по математике в МГУ им. М.В. Ломоносова в 2008 году.
  3. Вступительные испытания по математике в МГУ им. М.В. Ломоносова в 2009 году.
  4. Вступительные испытания по математике в МГУ им. М.В. Ломоносова в 2010 году.
  5. Г.В.Дорофеев, М.К.Потапов, Н.Х.Розов. ПОСОБИЕ ПО МАТЕМАТИКЕ ДЛЯ ПОСТУПАЮЩИХ В ВУЗ. (избранные вопросы элементарной математики). 1976г., 5-е изд -638с.
  6. МЕТОДИЧЕСКИЕ РАЗРАБОТКИ ДЛЯ УЧАЩИХСЯ. ИЗБРАННЫЕ ЗАДАЧИ ПО МАТЕМАТИКЕ (малый мехмат).
  7. Нагибин Ф.Ф. Экстремумы.
  8. И.П.Натансон. Простейшие задачи на максимум и минимум.
  9. В.П.Воронин, М.В. Федотов — Задачи со вступительных экзаменов по математике МГУ им. М. В. Ломоносова.
  10. Алфутова Н.Б., Устинов А.В. Алгебра и теория чисел: Сборник задач для математических школ.
  11. И.Х.Сивашинский. Теоремы и задачи по алгебре и элементарным функциям.
  12. И.Х.Сивашинский. Неравенства в задачах.
  13. И.Х.Сивашинский. ЗАДАЧИ ПО МАТЕМАТИКЕ ДЛЯ ВНЕКЛАССНЫХ ЗАНЯТИЙ.
  14. Ю.В. Садовничий. МАТЕМАТИКА. Конкурсные задачи по алгебре с решениями.
  15. Н.Д.Золотарёва, Н.Л.Семендяева, М.В.Федотов. Геометрия. Базовый курс с решениями и указаниями. (ЕГЭ, олимпиады, экзамены в вуз). М., «Фойлис», 2010
    Настоящее пособие содержит теоретический материал, подборку задач, а также идеи, указания (подсказки) и решения задач.
  16. Н.Д.Золотарёва, Ю.А.Попов, Н.Л.Семендяева, М.В.Федотов. Алгебра. Базовый курс с решениями и указаниями. (ЕГЭ, олимпиады, экзамены в вуз). М., «Фойлис», 2010
  17. Н.Д.Золотарёва, Ю.А.Попов, Н.Л.Семендяева, М.В.Федотов. Математика. Сборник задач по базовому курсу. (ЕГЭ, олимпиады, экзамены в вуз). М., «Фойлис», 2010
  18. Т.В.Амочкина, А.А.Вороненко, Т.Ю.Горякова, Е.Н.Хайлов. Подготовка к вступительным экзаменам в МГУ. Математика 9-10. М., «МАКС Пресс», 2007
  19. М.В.Федотов, Н.Д.Золотарёва. Подготовка к вступительным экзаменам в МГУ. Геометрия. М., «МАКС Пресс», 2009
    Настоящее пособие составлено на основе задач вступительных экзаменов по математике в МГУ имени М.В. Ломоносова.
  20. В.Я.Галкин, Д.Ю.Сычугов, Е.В.Хорошилова. Конкурсные задачи, основанные на теории чисел.
    В данном пособии в пределах программы вступительных экзаменов рассматриваются элементы теории чисел.
  21. Подготовка к вступительным экзаменам в МГУ. Математика для самообразования.
    М.В. Федотов, А.В. Разгулин, Е.Ю. Романова, Т.В. Амочкина
    Настоящее пособие составлено на основе задач письменных вступительных экзаменов по математике в МГУ за 1977-2001 годы.
  22. М.В.Федотов, Е.Н.Хайлов, И.В.Дмитриева, С.И.Соловьева. Математика для самообразования: Задачи устного экзамена.
    Настоящее пособие составлено для поступающих на факультет ВМК МГУ им. М.В. Ломоносова.
  23. С.Н. Аввакумов и др. Задачи вступительных экзаменов по математике (2006 г.)
    Сборник содержит варианты вступительных экзаменов по математике факультетов МГУ.
  24. И.Ф.ШАРЫГИН. ФАКУЛЬТАТИВНЫЙ КУРС ПО МАТЕМАТИКЕ. РЕШЕНИЕ ЗАДАЧ. 10-й класс.
  25. И.Ф.ШАРЫГИН, В.И.ГОЛУБЕВ. ФАКУЛЬТАТИВНЫЙ КУРС ПО МАТЕМАТИКЕ. РЕШЕНИЕ ЗАДАЧ. 11-й класс.
  26. П.С.Моденов. ЗАДАЧИ ПО ГЕОМЕТРИИ. 1979г.
  27. ЗАДАЧИ И ОЛИМПИАДЫ. Избранные задачи. Из журнала «AMERICAN MATHEMATICAL MONTHLY».
  28. ПЯТАЯ СОРОСОВСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ 1998 — 1999.
  29. 0лимпиады и вступительные экзамены по математике в МГУ (2009г.).
  30. Вступительные экзамены в американские университеты. Математика.
  31. В. Серпинский. О решении уравнений в целых числах.
  32. А.О.Гельфонд. Решение уравнений в целых числах.
  33. П.П.Коровкин. Неравенства.
  34. И.Ф. Шарыгин. Уроки дедушки Гаврилы, или Развивающие каникулы.
  35. В.И.АРНОЛЬД. ЗАДАЧИ ДЛЯ ДЕТЕЙ ОТ 5 ДО 15 ЛЕТ.
  36. А.И.МАРКУШЕВИЧ. ПЛОЩАДИ и ЛОГАРИФМЫ.
  37. А.С.СМОГОРЖЕВСКИЙ. МЕТОД КООРДИНАТ.
  38. И.Р.ШАФАРЕВИЧ. О РЕШЕНИИ УРАВНЕНИЙ ВЫСШИХ СТЕПЕНЕЙ (МЕТОД ШТУРМА).
  39. В.Г.БОЛТЯНСКИЙ. ЧТО ТАКОЕ ДИФФЕРЕНЦИРОВАНИЕ?
  40. Б.П.Гейдман. Площади многоугольников.
  41. А.Г.Мякишев. ЭЛЕМЕНТЫ ГЕОМЕТРИИ ТРЕУГОЛЬНИКА.
  42. А.Г.Курош. Алгебраические уравнения произвольных степеней.
Смотрите так же:  Пенсионер ищу работу в ростове

Для математического кружка и занятий с подготовленными детьми (многие издания высылаются электронкой):

  1. Бабинская И.Л. Задачи математических олимпиад // Наука, М., 1972
  2. Арнольд В.И. Задачи для детей от 5 до 15 лет // МЦНМО, М., 2004
  3. Шарыгин И.Ф., Шевкин А.В. Задачи на смекалку 5-6 // Просвещение, М., 2010
  4. Спивак А.В. Математический кружок 6-7 классы // МЦНМО, М., 2011
  5. Ященко И.В. Приглашение на математический праздник // МЦНМО, М., 2009
  6. Козлова Е.Г. Сказки и подсказки. Задачи для математического кружка // МЦНМО, М., 2011
  7. Фарков А.В. Математические кружки в школе 5-8 классы // Айрис-пресс, М., 2008
  8. Математика. Областные олимпиады. 8—11 классы / [Н. X. Агаханов, И. И. Богданов, П. А. Кожевников и др.]. — М. : Просвещение, 2010. — 239 с. : ил. — (Пять колец). — ISBN 978-5-09-018999-6.
  9. Математика. Всероссийские олимпиады. Вып. 1-2 / [Н. X. Агаханов, И. И. Богданов, П. А. Кожевников и др.]. — М. : Просвещение, 2008. — 192 с. ил. — (Пять колец). — ISBN 978-5-09-017182-3.
  10. Агаханов Н. X. Математика. Международные олимпиады / Н. X. Агаханов, П. А. Кожевников, Д. А. Терешин. — М. : Просвещение, 2010. — 127 с. : ил. — (Пять колец). — ISBN 978-5-09-019788-5.
  11. Агаханов Н. X. Математика. Районные олимпиады. 6—11 классы / Агаханов Н.X., Подлипский О.К. — М. : Просвещение, 2010. — 192 с. : ил. — (Пять колец). — ISBN 978-5-09-018951-4.
  12. Балаян Э.Н. 1001 олимпиадная и занимательная задачи по математике. 3-е изд. — Ростов н/Д : Феникс, 2008. — 364, [1] с.: ил. — (Библиотека учителя). ISBN 978-5-222-14785-6
  13. Бугулов Е.А., Толасов Б.А. Сборник задач для подготовки к математическим олимпиадам. — Орджоникидзе, 1962. — 226 с.
  14. Бардушкин В.В., Кожухов И.Б., Прокофьев А.А., Фадеичева Т.П. Основы теории делимости чисел. Решение уравнений в целых числах. Факультативный курс. – М.: МГИЭТ(ТУ), 2003. – 224 с
  15. Васильев Н.Б., Савин А.П., Егоров А.А. Избранные олимпиадные задачи. Математика. — М.: Бюро Квантум, 2007. — 160 с. (Библиотечка «Квант». Вып 100. Приложение к журналу «Квант» № 2/2007.) ISBN 5-85843-065-1
  16. Чарльз Тригг. Задачи с изюминкой // Мир, М., 2000
  17. Шень А. Простые и составные числа //МЦНМО, М., 2008
  18. Шевкин А.В. Школьная математическая олимпиада. 1-2 выпуски // Илекса, М., 2010
  19. Арнольд В.И. Математическое понимание природы // МЦНМО, М., 2010
  20. Гарднер М. Математические головоломки и развлечения // М. Мир, 1971
  21. Гарднер М. Математические досуги // М. Мир, 1972
  22. Гарднер М. Математические новеллы // М. Мир, 1974
  23. Гарднер М. Крестики-нолики // М. Мир, 1988
  24. Гарднер М. Есть идея // М. Мир, 1982
  25. Барр Ст. Росссыпи головоломок // М. Мир, 1987
  26. Бизам Д., Герцег Я. Игра и логика // М. Мир, 1975
  27. Бизам Д., Герцег Я. Многоцветная логика // М. Мир, 1978
  28. Лойд Сэм. Математическая мозаика // М. Мир, 1980
  29. Дьюдени Генри Э. 520 головоломок // М. Мир, 1975
  30. Дьюдени Генри Э. Кентерберийские головоломки // М. Мир, 1979
  31. Болл У., Коксетер Г. Математические эссе и развлечения // М. Мир, 1986
  32. Избранные задачи ( из журнала “American Mathematical Monthly”). М. Мир, 1977

Математика. Подготовка к ЕГЭ и ДВИ МГУ

Рекомендовано школьникам при подготовке к сдаче единого государственного экзамена и абитуриентам при подготовке к поступлению как в МГУ, так и в другие вузы.

  • бесплатный самовывоз,
  • оплата картой или наличными,
  • при заказе на сумму от 10000 рублей доставка в пределах МКАД бесплатная,
  • доставка в регионы.

Настоящее пособие составлено на основе задач вступительных экзаменов по математике в МГУ имени М. В. Ломоносова и задач единого государственного экзамена преподавателями факультета ВМК МГУ имени М. В. Ломоносова.

Рекомендуется школьникам при подготовке к сдаче единого государственного экзамена и абитуриентам при подготовке к поступлению как в МГУ, так и в другие вузы.

кандидат физико-математических наук, доцент

Преподаватель подготовительных курсов МГУ, член экзаменационной комиссии МГУ, сертифицированный эксперт ГИА-11 (ЕГЭ) по математике. Автор более 50 научных и учебно-методических работ.

доктор физико-математических наук, профессор

Профессор кафедры математической физики. Автор более 100 научных и учебно-методических статей, более 20 научных монографий и учебно-методических пособий. Читает несколько общих и специальных курсов студентам бакалавриата и магистратуры факультета ВМК МГУ имени М.В. Ломоносова.

кандидат физико-математических наук, доцент

Доцент кафедры математической физики, заместитель декана по учебной работе факультета ВМК МГУ имени М.В.Ломоносова. Автор более 100 научных и учебно- методических работ.

кандидат физико-математических наук, доцент

Доцент кафедры оптимального управления, помощник декана по аспирантуре факультета ВМК МГУ имени М.В. Ломоносова. Автор более 100 научных и учебно-методических работ.

Настоящее пособие составлено на основе задач вступительных экзаменов по математике в МГУ имени М. В. Ломоносова и задач единого государственного экзамена преподавателями факультета ВМК МГУ имени М. В. Ломоносова.

Рекомендуется школьникам при подготовке к сдаче единого государственного экзамена и абитуриентам при подготовке к поступлению как в МГУ, так и в другие вузы.

Для цитирования Золотарёва Н. Д., Разгулин А. В., Федотов М. В., Хайлов Е. Н. Математика. Подготовка к ЕГЭ и ДВИ МГУ. — М.: Издательство Московского университета, 2018. — 492 с.

Пособие по математике
для поступающих в МГУ

МОСКОВСКИЙ ОРДЕНА ЛЕНИНА
И ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ
ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
им. М. В. ЛОМОНОСОВА

Подготовительные курсы
естественных факультетов

Подготовка к экзаменам рассчитана на один учебный год. Учащиеся должны систематически работать над школьными учебниками, по которым необходимо повторить программу курса по математике. Никаких дополнительных знаний сверх школьной программы для поступления в Московский университет не требуется. Однако приобрести навыки решения экзаменационных задач, и особенно задач повышенной трудности, необходимых в первую очередь поступающим на факультеты с математическим уклоном; можно только в результате систематической напряженной работы.
В этой книге сформулированы основные темы для проработки, дан перечень необходимых параграфов в учебнике и список задач для решения. В конце первой части помещены контрольные задания для учащихся заочных подготовительных курсов.
Во второй части пособия приведено большое количество задач, предлагавшихся на письменных экзаменах по математике абитуриентам естественных факультетов МГУ в 1972—1975 гг. Для первого варианта каждого факультета выполнен подробный разбор, ознакомление с которым может служить ключом для решения остальных задач этого факультета. Эта часть книги должна послужить пособием для приобретения практических навыков решения задач.
Курсы рекомендуют учащимся ориентироваться на следующие учебные пособия:
1. Дорофеев Г. В., Потапов М. К., Розов Н. X. Пособие по математике для поступающих в вузы. М., «Наука», 1971—1976.
2. Моденов П. С., Новоселов С. И. Пособие по математике для поступающих в вузы. Изд-во МГУ, 1966.
3. Лидский В. Б., Овсянников Л. В., Ту-лайков А. Н., Шабунин М. И. Задачи по элементарной математике. М., Физматгиз, 1963.
4. Александров Б. И., Максимов ‘В. М., Лурье М. В., Колесниченко Д. В. Пособие по математике для поступающих в вузы. Изд-во МГУ, 1972.
5. Лурье М. В., Александров Б. И. Задачи на составление уравнений. М., Наука, 1976.
Подготовительные курсы не располагают этими пособиями и не высылают их учащимся.
Авторы

МЕТОДИЧЕСКОЕ РУКОВОДСТВО И КОНТРОЛЬНЫЕ ЗАДАНИЯ
§ 1. МЕТОДИКА ИЗУЧЕНИЯ ПРОГРАММНОГО МАТЕРИАЛА ПО МАТЕМАТИКЕ УЧАЩИМИСЯ ЗАОЧНЫХ ПОДГОТОВИТЕЛЬНЫХ КУРСОВ МГУ
Изучение программного материала по математике учащимися заочных подготовительных курсов МГУ проводится по трем основным разделам: алгебра, геометрия и тригонометрия.
Работа учащегося-заочника складывается из следующих основных элементов: чтение учебников, решение задач, выполнение контрольных заданий. Основной формой обучения учащегося-заочника является самостоятельная работа над учебным материалом.
Подготовка к вступительным экзаменам на любой из факультетов МГУ является трудоемким делом; его можно успешно выполнить только при систематической и напряженной самостоятельной работе. Готовиться к экзаменам следует систематически в течение всего учебного года. Изучение курса математики в сжатые сроки перед экзаменами не даст глубоких и прочных знаний и не приведет к положительному завершению работы.

Самостоятельная работа над учебными пособиями
Самостоятельная работа над учебными пособиями является главным видом работы учащегося-заочника, и поэтому от ее организации зависит многое. Учащимся рекомендуется руководствоваться следующими положениями:
1) избрав какое-нибудь учебное пособие в качестве основного по определенной части курса математики, учащийся должен придерживаться данного пособия при изучении всей части курса или по крайней мере целого раздела. Замена одного пособия дру-
гимч процессе изучения может привести к утрате логической связи между отдельными вопросами. Для решения задач, однако, можно использовать различные источники и прежде всего те пособия, которые высылаются курсами;
2) читая учебник по математике, следует переходить к новому материалу лишь после усвоения предыдущего. Все выкладки и вычисления, так же как и соответствующие чертежи учебника, следует выполнит^ самому после ознакомления с данным материалом по учебнику или пособию.
Чтецие учебника или учебного пособия необходимо сопровождать составлением конспекта, в котором записываются основные теоремы, их доказательства и выполняется решение типовых задач и упражнений, имеющихся после соответствующих разделов в учебнике.
Опыт показывает, что основные формулы полезно выписывать на отдельном листке, который не только поможет запомнить их, но и будет служить справочным материалом.

Смотрите так же:  Продажа дома с землей за материнский капитал

Решение задач
Решение задач можно начинать с разбора задач, решенных в учебнике и разобранных в пособиях, а затем переходить к самостоятельному решению задач, рекомендованных по этому разделу. Решение задач определенного типа должно продолжаться до приобретения прочных навыков в их решении. Очень полезно, если для решения всех задач отведена одна тетрадь. Это дает возможность впоследствии легко повторить пройденный материал.
Чертежи можно выполнять от руки, но аккуратно. В промежуточных вычислениях не следует вводить приближенные значения корней или каких-либо других выражений. Помните, что большое количество решенных задач позволит, с одной стороны, глубже понять изучаемый материал, с другой стороны, определит успех njhi решении прдобных задач на экзамене.
Умение решать задачи приобретается длительными систематическими упражнениями. Примите за правило каждый день решать по нескольку задач на тот или иной раздел программы. Опыт решения задач необходим и для выполнения контрольных работ.

Выполнение контрольных работ
Выполнение контрольных работ учащимися подготовительных курсов и рецензирование их преподавателями преследует две цели: во-первых, осуществление курсами контроля за работой учащегося; во-вторых, оказание ему помощи в вопросах, которые ока-6
зались для него непонятными. По каждой контрольной работе учащимся заочных подготовительных курсов будет выслана методическая записка, в которой дано подробное решение всех задач этой контрольной работы и приведен анализ типичных ошибок, встречавшихся при ее выполнении.
К выполнению контрольных работ по каждому разделу курса или по частям этого раздела учащийся приступает только после изучения материала, соответствующего данной части программы, ознакомившись о примерами решения задач подобного рода, приведенных в пособии.
При выполнении контрольных работ требуется, чтобы решения были записаны в тетради со всеми вычислениями и краткими объяснениями. В алгебраических примерах нужно объяснять, что из чего получается, если это необходимо, проводить проверку решений, указывать возникающие ограничения. Если по характеру задачи требуется построение чертежа, то он должен быть обоснован, аккуратно/Выполнен, все обозначения должны быть четкими и соответствовать условию задачи* Кроме того, требуется, чтобы чертеж был крупным. При построении графиков функций следует использовать общие методы: перенос, сдвиг и т. д.
Если в процессе решения задачи используется какая-нибудь теорема, то она должна быть названа. «Очевидным» считается то утверждение, которое входило в программу курса по математике и содержится в учебнике. Все геометрические утверждения должны быть строго доказаны. Не допускайте арифметических ошибок и строго контролируйте свои вычисления. Контрольные работы, выполненные без соблюдения изложенных выше правил, не. засчитываются.

§ 2. ЛИТЕРАТУРА, РАБОЧИЙ ПЛАН,
МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО РАЗДЕЛАМ ЭЛЕМЕНТАРНОЙ МАТЕМАТИКИ ДЛЯ УЧАЩИХСЯ ЗАОЧНЫХ ПОДГОТОВИТЕЛЬНЫХ КУРСОВ МГУ
Для подготовки к вступительным экзаменам по математике учащимся рекомендуется использовать следующую литературу, применительно к которой составлено это пособие.

Основная литература
1. Кочетков Е. С., Кочеткова Е. С. Алгебра и элементарные функции, чч. I и II. М., «Просвещение», 1971—1974.
2. Киселев А. Н. Геометрия, ч. II. М., «Просвещение», 1971; а также ч. I любого года издания.
3. Барыбин К. С. Геометрия. М., «Просвещение», 1972.

Дополнительная литература
Александров Б. И., Лурье М. В. Пособие по математике для поступающих в МГУ. Изд-во МГУ, 1976.
В дальнейшем все перечисленные книги обозначаются сокращенным образом. Например, под обозначением «Кочетковы, ч. I» следует понимать: Кочетков Е. С., Кочет’ков а Е. С. Алгебра и элементарные функции, ч. I; под обозначением «Пособие, § 15, 3(1)» нужно понимать: Александров Б. И., Лурье М. В. Пособие по математике для поступающих в МГУ, часть 2-я, § 15, вариант № 3, задача 1.
В каждой теме перечисляются в рекомендуемом порядке номера параграфов из учебников, который учащийся должен прочесть, и номера задач й вариантов, которые он должен решить.

Раздел I. АЛГЕБРА
Тема 1. Действительные числа
Основные определения. Изображение действительных чисел точками на числовой оси. Запись с помощью неравенств множеств на числовой оси: отрезка, интервала, полуинтервала, полуоси. Абсолютная величина действительного числа и ее основные свойства. Геометрическая интерпретация абсолютной величины. Решение уравнений и неравенств, содержащих неизвестное в виде линейного выражения под знаком абсолютной величины.
Учебник — Кочетковы, ч. I, § 35—48, упражнения № 289—293, 296—299, 305—307, 316—322, 347—353; § 7, 8, упражнения №60— 74, 75—78; § 18, 25, упражнения № 207—219.
Пособие — § 4, 1 (1), 21(1), 3(1), 4 (1).
Указание. Рассмотрим решение уравнения, содержащего неизвестное под знаком абсолютной величины.
Решить уравнение:
Решение. Определение абсолютной величины гласит:
Общий объем требований по математике, — предъявляемых к поступающим в МГУ, определяется ежегодно издаваемой общей для всех высших учебных, заведений «Программой вступительных экзаменов для поступающих в высщие учебные заведения СССР».
В предлагаемой учащимся курсов рабочей программе отмечены лишь наиболее трудоемкие и имеющие первостепенное значение для решения задач вопросы из этой программы.
Поэтому определим точки, в которых хотя бы одно из выражений, стоящих под знаком модуля, равно нулю. Это будут числа 3 и —2. Точки —2 и 3 делят все числа на три области, в каждой из которых уравнение (1) можно записать без знака модуля. Рассмотрим возможные случаи.
Г. Будем искать те решения уравнения (1), которые удовлетворяют системе

Пособие по математике для поступающих в мгу

Вот уже шестой год Научно-технический центр «Университетский» и журнал «Абитуриент» проводят Всероссийское заочное тестирование по математике для поступающих в вузы.

Это мероприятие абитуриенты успели полюбить. Каждую весну сотни из тех, кто прошел тестирование, приглашались в вузы на досрочные экзамены и становились студентами уже в марте-мае, не дожидаясь летних вступительных экзаменов и всей связанной с этим нервотрепки. Всего за эти годы в тестировании в той или иной форме участвовало около 40 ведущих московских вузов. Они рассылали каждому участнику тестирования полную информацию обо всех запланированных на весну мероприятиях: досрочных, репетиционных и вступительных экзаменах, тестированиях, олимпиадах, Днях открытых дверей и др. Многие из них для участников тестирования объявляли льготы на вступительных экзаменах.

Очень жаль, что Министерство образования РФ этой весной, по сути, запретило проведение досрочных экзаменов. Поэтому часть вузов отказалась от их проведения, другие проводят, но называют их региональными олимпиадами. В связи с этим заочное тестирование как первый тур поступления в вуз в значительной мере потеряло свою силу. Тем не менее даже в такой ситуации несколько вузов все-таки использовали результаты тестирования при приеме.

Например, в марте на механико-математическом факультете МГУ им. М. В. Ломоносова проводилась олимпиада по математике «АБИТУРИЕНТ-99», на которую допускались и лучшие участники нашего заочного тестирования, проживающие за пределами Москвы и Московской области. Успешно выступившие на этой олимпиаде представлялись к зачислению на факультет.

А в Российском государственном университете нефти и газа им. И. М. Губкина (ГАНГ) досрочные вступительные экзамены проводились в начале мая только для выпускников подготовительных курсов. Но к этим экзаменам традиционно допускаются и участники тестирования. В итоге каждый год в ГАНГ зачисляется несколько десятков человек, прошедших заочное тестирование.

В МГТУ «СТАНКИН» на технические факультеты зачислялись лучшие участники за

очного тестирования (при условии успешной сдачи экзаменов по математике). Кроме того, в качестве результатов экзаменов засчитывались результаты предварительной аттестации.

Сейчас сложно говорить о том, какие льготы будут предоставляться участникам заочного тестирования весной 2000 года. Это зависит от того, какими станут новые правила приема в вузы, которые скоро должны быть приняты в Министерстве образования РФ.

Не исключено даже, что через несколько лет вступительные экзамены отменят вообще. Следите за нашими публикациями!

Но как бы ни сложилась ситуация с досрочными экзаменами, просто проверить свои силы очень полезно всем абитуриентам. Ведь, решив любой из данных тестов и выслав его по указанному ниже адресу, вы получите обратно полные решения задач всех трех тестов с анализом характерных ошибок, проверенную работу с отмеченными недочетами и указанием, над чем вам следует работать в будущем. Те же, кто хорошо справится с тестом (под словом «хорошо» вовсе не имеется в виду, что решено большинство задач, иногда достаточно грамотно и четко решить несколько), имеют шансы получить персональные приглашения на досрочные и репетиционные экзамены в конкретные вузы (надеемся, что такие экзамены все же не отменят), а также награды (см. далее).

Смотрите так же:  Ликвидация сельхоз предприятия

Кто-то из вас, возможно, решит, что это не для него: «куда там соваться с моим знанием математики. » — и будет неправ! Во-первых, «не боги горшки обжигают» — многие склонны сильно преуменьшать свои знания; а во-вторых, во многих вузах требуется не столь уж высокий уровень знания математики.

Перед вами три теста. Тест № 1 определяет уровень владения стандартной школьной программой по математике, тест № 2 соответствует уровню вузовского вступительного экзамена, тест № 3 — тест повышенной сложности, соответствующий вузу с высоким уровнем преподавания математики. При этом задачи во всех тестах несколько более сложные, чем задачи конкретных экзаменов. Это сделано потому, что у вас будет много времени на решение, что вы будете в спокойной домашней обстановке, что можно «посоветоваться» с учебником, с друзьями, а порой и с учителем.

Возникает вопрос: какой же тест решать? Это зависит от того, на какой уровень вступительного экзамена вы «претендуете».

Если вы хотите поступить в вуз с высоким уровнем преподавания математики, мы рекомендуем решать тест № 3. Можете вместо этого (или вместе с этим) попытаться хорошо справиться с тестом № 2. Если же ваш вуз «обычный», то решайте тест № 1 или 2. Вы вправе решить один, два или все три теста. Оценки по каждому из них независимы и не влияют на оценки другого теста.

Несколько слов об оформлении работ. Тест должен быть решен в отдельной тетради. Необходимо оставить для замечаний проверяющих поля шириной 6 клеточек. Условия задач переписывать не надо. Если вы решаете два или три теста, то их можно решать в этой же тетради, а если не хватает места, то добавить другую (или использовать тетрадь в 24 листа).

На обложке тетради обязательно укажите: фамилию, имя, отчество; почтовый адрес и индекс; школу и класс, в котором учитесь.

Участие в тестировании платное. Но сумма — достаточно умеренная, она включает в себя рекламные, почтовые, полиграфические, организационные расходы, оплату проверяющих тест преподавателей. Вы должны перечислить почтовым переводом 60 рублей за один тест (соответственно за два теста — 100 руб., за три — 150 руб.) и вместе с тетрадью прислать квитанцию об оплате или ее копию.

Адрес для отправления тетрадей и переводов: 117296, Москва, Университетский пр-т, д. 7, НТЦ «Университетский». Последний срок отправления (по почтовому штемпелю) — 20 января 2000 года.

Если вы боитесь делать предоплату, напишите на обложке тетради: «Оплату произведу при получении тестов», и тогда вы оплатите тесты уже при получении от нас своих тетрадей на почте в феврале-марте. Правда, сумма в этом случае будет примерно на 30 рублей больше.

Ваши проверенные тетради вместе с информационным пакетом будут рассылаться обратно в феврале — начале марта.

В этом году впервые лучшие участники тестирования будут награждены Оргкомитетом: они получат дипломы I, II, III степени и ценные призы.

Успехов вам! Ждем ваши работы!

2. Сколько решений имеет уравнение \[ |x-1| + |x-3| = a \] при различных значениях параметра а?

3. Сумма первых трех членов геометрической прогрессии равна 7, а их произведение — 8. Найти четвертый член прогрессии.

4. Решить уравнение \[ \sin^4x + \cos^4x + \sin <2x>= \frac 7 5 . \] 5. Решить уравнение \[ (x^2-x+1)^4 — 5x^2(x^2-x+1)^2 + 4x^4 = 0 . \] 6. Решить неравенство

\[ \log_ <\frac <10>> \log_x \sqrt <10-x>> 0. \] 7. Решить уравнение

\[ \sqrt<\cos^4x - \frac <\cos^2x> <2>+ \frac <1> <16>> + \sqrt<\cos^4x - \frac <3\cos^2x> <2>+ \frac <9> <16>> = \frac 1 2. \] 8. Углы при вершинах В и С выпуклого четырехугольника ABCD прямые, а синус угла D равен `4/sqrt 17`.

При этом известно, что сторона ВС вдвое длиннее стороны АВ и на 5 см — стороны CD. Найти площадь этого четырехугольника.

9. В треугольник со сторонами АВ = 5 см, ВС = 7 см, АС = 6 см вписана окружность, которая касается стороны АС в точке D. Найти длину отрезка BD.

10. В правильном тетраэдре ABCD с ребром а точка F является серединой ребра CB, а точка E — серединой отрезка DF. Найти длину отрезка АЕ.

3. О двух треугольниках известно, что длины сторон первого образуют арифметическую прогрессию, а второй является равносторонним. Известно, что их периметры совпадают и равны 3 см, а площади относятся как 4:5. Определить стороны треугольников.

4. Решить неравенство \[ \left( \sin \frac<59\pi> <20>\right)^\sqrt<\sqrt<7-x>-x+1> — \cos<\left( \frac<299><20>\pi \right)> \ge 0 .\] 5. Решить неравенство при всех значениях параметра а \[ \log_a(x-2) + \log_ax \gt \left( \frac x5 \right)^<\log_<\frac x5>2> — 1 .\] 6. Определить а, если известно, что уравнение \[ (a+1)x^4 -2(a+6)x^2 + a — 2 = 0 . \] имеет четыре различных корня.

7. Решить неравенство \[ (x^2-x+1)^4 — 5x^2(x^2-x+1)^2 +4x^4 \ge 0 . \] 8. Решить уравнение \[ |y-2|+1 = 2\cos(\pi xy) \cdot \lg(x+y) — \lg^2(x+y) . \] 9. В выпуклый четырехугольник ABCD с углами \( \angle A = 5\pi/9 \) и \( \angle B = 7\pi/18 \) вписана окружность, касающаяся отрезков АВ, ВС, CD, AD в точках E, F, G, H соответственно. Найти угол FGH.

10. В правильном тетраэдре ABCD с ребром а точка F является серединой ребра CB, а точка E — серединой отрезка DF. Найти такую точку Н на ребре DC, чтобы расстояние АН + НЕ было минимальным. Чему равно это расстояние?

3. В арифметической прогрессии с положительной разностью шестой член равен 3. При каком целом значении разности прогрессии произведение первого, четвертого и пятого членов прогрессии будет наибольшим?

4. При каком соотношении между величинами a, b и с выражение \[ y = a(\sin^6x + \cos^6x) + b(\sin^4x + \cos^4x) + c\sin^2x\cos^2x \] не зависит от х? Чему оно тогда равно?

Пособие по математике для поступающих в МГУ

  • Название: Пособие по математике для поступающих в МГУ
  • Автор: Александров Б.И.Лурье М.В.
  • Издательство: МГУ им. М.В. Ломоносова
  • Год: 1977
  • Метки: математика
  • Размер: 4.29 МБ

БУМАЖНАЯ ВЕРСИЯ КНИГИ

Настоящее пособие представляет собой методическое руководство по математике для учащихся подготовительных курсов МГУ, готовящихся к поступлению на естественные факультеты.
Подготовка к экзаменам рассчитана на один учебный год. Учащиеся должны систематически работать над школьными учебниками, по которым необходимо повторить программу курса по математике. Никаких дополнительных знаний сверх школьной программы для поступления в Московский университет не требуется. Однако приобрести навыки решения экзаменационных задач, и особенно задач повышенной трудности, необходимых в первую очередь поступающим на факультеты с математическим уклоном/ можно только в результате систематической напряженной работы.
В этой книге сформулированы основные темы для проработки, дан перечень необходимых параграфов в учебнике и список задач для решения. В конце первой части помещены контрольные задания для учащихся заочных подготовительных курсов.
Во второй части пособия приведено большое количество задач, предлагавшихся на письменных экзаменах по математике абитуриентам естественных факультетов МГУ в 1972—1975 гг. Для первого варианта каждого факультета выполнен подробный разбор, ознакомление с которым может служить ключом для решения остальных задач этого факультета. Эта часть книги должна послужить пособием для приобретения практических навыков решения задач.

Уникальное пособие по математическому анализу. Сборник задач

Математическое образование и математическая культура составляют стержень научного знания, и значение математики как основы фундаментальных исследований постоянно возрастает. Для решения этих задач требуются учебники, отражающие современное состояние и мировоззренческие принципы данной области науки.

В издательстве Московского университета вышла новая, дополненная книга ректора МГУ академика В.А. Садовничего, И.А. Виноградовой и С.Н. Олехника «Математический анализ в задачах и упражнениях» — руководство для проведения семинарских занятий по основному курсу математического анализа для вузов и для самостоятельной работы студентов.

Сборник задач содержит широкий круг упражнений по основным темам курса математического анализа, представлена большая подборка теоретических задач. Изложение каждой темы предваряется полной системой определений и формулировок основных теорем, а также примерами решения задач от типовых упражнений до заданий повышенного уровня сложности. В книге обобщен и методически переработан опыт преподавания математического анализа в Московском университете и в университетах страны за последние десятилетия.

Пособие по математике для поступающих в мгу