Сущность аргонно-дуговой сварки, газы, электроды

Сущность способа сварки в инертных газах

В инертных газах — аргоне, гелии, азоте и их смесях сваривают нержавеющие стали, легкие металлы — алюминий, магний, титан, цирконий и медь. Данный способ обеспечивает высокую производительность и получение швов высокого качества.

Наибольшее применение получили два способа сварки в аргоне: неплавящимся электродом и плавящимся электродом. Инертные газы не взаимодействуют с расплавленным металлом и его окислами; они обеспечивают лишь защиту дуги и расплавленного металла от действия кислорода окружающего воздуха, создавая вокруг них защитную газовую атмосферу.

Сварка в аргоне, гелии и других инертных газах имеет следующие преимущества перед сваркой покрытыми электродами и под флюсом:

1. Обеспечивает надежную защиту расплавленного металла от воздействия кислорода окружающего воздуха.

2. Не требует применения покрытий и флюсов, флюсы усложняют аппаратуру и процесс сварки и образуют, как и покрытия, шлаки, могущие загрязнять шов.

3. Характеризуется высокой производительностью и устойчивостью процесса сварки.

4. Позволяет осуществлять полную автоматизацию и механизацию процесса сварки.

5. Допускает возможность сварки разнородных металлов.

6. Дает наплавленный металл с высокими механическими свойствами и постоянством состава.

7. Обеспечивает хороший внешний вид сварного шва.

8. Дает малую зону теплового влияния, что уменьшает деформации, возникающие при сварке.

9. Делает возможной сварку металлов малой толщины.

10. Отсутствуют трудоемкие операции по очистке изделия от шлаков и остатков флюса.

Применяемые газы и электроды

Защитные газы. Требования к чистоте аргона и гелия определяются свойствами свариваемых металлов. Промышленностью выпускается для сварки аргон газообразный чистый по ГОСТ 10157-79 трех марок:

Марки А — для сварки и плавки активных и редких металлов (титана, циркония, ниобия) и сплавов на их основе, а также для сварки особо ответственных изделий из других материалов на заключительных этапах изготовления.

Марки Б — для плавки и сварки плавящимся и неплавящимся вольфрамовым электродом сплавов на основе алюминия и магния, а также других сплавов, чувствительных к примесям газов, растворимых в металле.

Марки В — для сварки и плавки нержавеющих, хромоникелевых, жаропрочных сплавов, легированных сталей различных марок и чистого алюминия.

Требования к аргону приведены в таблице ниже.

ГОСТ 10157—62 разрешает также по согласованным техническим условиям поставку газообразного аргона в смеси с кислородом, водородом, гелием и азотом.

Гелий выпускается по ВТУМХП 0446—54 двух марок:

Гелий и аргон поставляются в баллонах под давлением 150±5 кгс/см 2 . Баллоны для аргона окрашены в серый цвет. На верхней части баллона нанесена зеленая полоса и сделана черная надпись «Аргон чистый». Баллоны для гелия окрашивают в коричневый цвет; баллоны с гелием I надписи не имеют, с гелием II — имеют белую надпись «Гелий».

Если аргон содержит повышенное количество углекислого газа, влаги и кислорода, его можно подвергать дополнительной очистке, пропуская перед поступлением в горелку через очистительные колонки, заполненные 30%-ным раствором едкого калия (для очистки от С02) и кусками едкого калия (для осушки от влаги). Затем аргон пропускают через электропечь с медной стружкой, которая при температуре 650—700° С удерживает кислород. Расход аргона при сварке зависит от диаметра электрода и обычно составляет от 120 до 600 дм 3 /ч.

Расход гелия при сварке на 30—40% выше расхода аргона, напряжение дуги в гелии в 1,5—2 раза больше, чем в аргоне. Дуга в гелии при одинаковом токе выделяет больше тепла, чем в аргоне и обладает большей проплавляющей способностью. Изменение длины дуги в гелии оказывает большее влияние на глубину проплавления. Гелий в 10 раз легче аргона. Более широкое применение для сварки получил аргон.

Электроды. В качестве неплавящихся электродов применяют вольфрамовые стержни. Вольфрам представляет собой тугоплавкий металл, плавящийся при 3350—3600° С. Для электрода берется вольфрамовая проволока диаметром от 1 до 8 мм, содержащая до 1,5—2% окиси тория, или вольфрамовая проволока BЛ-10 с примесью лантана. Добавка к вольфраму тория или лантана при сварке на постоянном токе прямой полярности обеспечивает высокую устойчивость дуги, хорошее ее зажигание, позволяет повысить плотность тока в электроде при малом расходе вольфрама и уменьшает чувствительность электрода к загрязнениям при коротких замыканиях его на изделие. В процессе сварки электрод частично испаряется; расход вольфрамовых электродов при токе до 300 А равен примерно 0,5 г/м шва.

Угольные или графитированные электроды можно применять только при сварке нержавеющих и жароупорных сталей и нельзя использовать при сварке легких сплавов (алюминиевых и магниевых), так как в этом случае на поверхности шва получается темный налет и образуются поры. При сварке угольными электродами не обязательна дополнительная очистка технического аргона от примеси кислорода и влаги, так как эти вещества химически связываются углеродом электрода и поэтому не оказывают вредного влияния на качество шва.

При сварке плавящимся электродом используется металлическая проволока из того же металла, что и свариваемый металл (алюминий, нержавеющая сталь).

Автор: Администрация Общая оценка статьи: Опубликовано: 2012.05.15

Требования к чистоте инертных газов для сварки

Гелий и аргон для сварки должны соответствовать определенным требованиям в отношении их чистоты и содержания примесей. Эти требования значительно изменяются в зависимости от состава и толщины свариваемого металла, а также состава присадочного металла. Они повышаются с усложнением состава свариваемого и присадочного металла и с увеличением толщины свариваемого материала.

Наиболее высокие требования к чистоте инертных газов предъявляются при сварке алюминиевых сплавов и алюминия. При использовании вольфрамового электрода для сварки на переменном токе алюминия и его сплавов минимальное содержание гелия или аргона должно составлять 99,7-99,8%. Примеси кислорода, азота, водяного пара, водорода, углекислого газа и углеводородов в заметных количествах недопустимы. Данные о влиянии перечисленных примесей на результаты сварки алюминия и его сплавов приведены в табл. 12.

Водяной пар под действием дуги диссоциирует на водород и кислород, увеличивая, таким образом, содержание этих примесей в окружающей дугу атмосфере. Водород абсорбируется расплавленным металлом и, медленно выделяясь при его охлаждении, дает пористый шов.

При сварке магниевых сплавов водяной пар (или водород) вызывает значительную пористость шва даже в том случае, когда их содержится в инертном газе всего 0,2-0,3%.

При сварке алюминиевых сплавов гелий или аргон должны, быть полностью осушены.

В табл. 13 приведены предельные содержания азота в аргоне для сварки сплавов АМц и Д16 по данным А. В. Петрова.

Отрицательное влияние азота и кислорода проявляется главным образом в технологических затруднениях процесса сварки (ухудшается формирование шва и сплавление кромок); с этой точки зрения предельное содержание примеси кислорода в аргоне для сварки большинства легких сплавов следует ограничить величиной 0,05%.

На механические свойства соединений сплавов АМц и Д16 примеси азота и кислорода в количестве соответственно до 1 и 0,5% не оказывают вредного влияния. Заметное снижение механических свойств указанных соединений, наступающее при превышении указанных пределов, обязано также плохому формированию шва, не-сплавлению кромок с обратной стороны шва и другим дефектам, вызывающим ослабление сечения шва.

Для сварки нержавеющих сплавов типа 18-8 оказалось возможным применить аргон с примесью водяного пара около 0,5%.

Таблица 12. Влияние примесей в аргоне на результаты сварки алюминия и его сплава

Содержание влаги в газе увеличивается по мере снижения давления гелия в баллоне, и при давлении 3,5 ати могут образоваться дефекты в металле шва. Поэтому появление в швах пористости служит сигналом о необходимости смены баллона.

Кислород, реагируя с металлом, образует окисные пленки, затрудняющие сплавление кромок и вызывающие посторонние включения в сварном шве.

При сварке магниевых сплавов содержание кислорода не должно превышать 0,5%.

При сварке нержавеющих сплавов типа 18-8 практически оказалось возможным применять аргон с примесью кислорода до 1 %. Никель и высоконикелевые сплавы, а также углеродистые стали можно сваривать с аргоном, в котором имеются лишь следы кислорода.

При сварке магния и его сплавов, а также нержавеющей стали типа 18-8 с использованием вольфрамовых электродов оказалось возможным применять технический аргон т. е. в смеси с азотом, содержание которого доходило до 20%. При большем содержании азота начинает плавиться вольфрамовый электрод. При замене же вольфрамового электрода угольным сплавы 18-8, а также сплавы 25-20 и ХН78Т оказалось возможным сваривать, используя в качестве защитного газа азот. Азот можно применять также при сварке меди.

Увеличение содержания азота в аргоне при сварке указанных выше нержавеющих сплавов, а также меди ведет к увеличению скорости сварки ввиду увеличения тепловой мощности дуги. Наоборот, при сварке магния и его сплавов присутствие азота в гелии или аргоне снижает скорость сварки. Такое действие азота в этом случае объясняется, повидимому, химическими взаимодействиями между расплавленным магнием и азотом.

Смотрите так же:  Плохих учебное пособие

Имеются сведения о том, что примесь азота в аргоне также ухудшает свойства сварных соединений магниевых сплавов.

По данным В. А. Костюка, в сварных швах магниевых сплавов МА1 и МА8, выполненных с аргоном, содержащим азот (технический аргон), рентгеном обнаружены газовые поры и включения диаметром до 0,5 мм. В швах, выполненных с использованием чистого аргона (с содержанием азота, равным 0,4%), указанные дефекты не обнаружены.

Испытаниями сварных соединений на растяжение установлено снижение механических свойств при использовании технического аргона с содержанием азота до 14,7% (фиг. 57).

Помимо указанного, при сварке магниевых сплавов МА1 и МА8 на весу (без подкладки) с использованием технического аргона (содержащего азот) не удается получить удовлетворительный шов, при использовании же чистого аргона сварка на весу при соответствующей тренировке сварщика удается довольно легко.

Алюминий можно сваривать на постоянном токе прямой полярности при условии использования гелия очень высокой чистоты (99,99%).

Требования к чистоте аргона для сварки некоторых металлов и сплавов сведены в табл. 14.

Таблица 14. Требования к чистоте аргона:

Очистка инертных газов

Получаемые промышленным путем инертные газы (аргон и гелий) обычно содержат примеси, которые могут быть удалены из газа различными физическими или физико-химическими способами.

Для осушки газа применяют охлаждение, компримирование и сочетание компримирования газа с его охлаждением. К физико-химическим методам осушки относятся процессы абсорбции и адсорбции влаги, нашедшие широкое развитие.

Осушка с применением адсорбентов заключается в поглощении влаги высокопористыми веществами: силикагелем, алюмогелем.

В условиях эксплуатации выявились несомненные преимущества алюмогеля (активированной окиси алюминия) перед силикагелем, хотя по своей поглотительной способности оба они высокоактивны. Эти преимущества состоят в большей механической устойчивости окиси алюминия при многократной регенерации, которая для oкиси алюминия проводится при температуре 245-260° С, для силикагеля — при 180-220° С.

Очистку от кислорода можно производить пропусканием газа через сосуд с нагретой медной стружкой или обрезками медной проволоки. Кальций, нагретый до 700° С, также хорошо поглощает кислород. Водород можно удалить, пропуская газ через сосуд с нагретой окисью меди. При этом, если в газе содержится примесь окиси углерода, последняя восстанавливает окись меди и превращается в углекислый газ, который поглощается едким кали или едким натром (каустиков).

Методы очистки газа от азота весьма сложны. Один из способов заключается в пропускании газа через сoсуд с горящей в нем дугой между кальциевыми или бариевыми электродами. При зажигании дуги кальций или барий частично испаряются, а ионизированные газы, кроме инертных, поглощаются металлом электродов, осаждающимся на стенках сосуда. Другой метод заключается в пропускании содержащего азот газа над раскаленным или расплавленным магнием или кальцием при повышенном давлении.

Из-за трудностей осуществления и дороговизны описанных методов очистка инертного газа от азота на месте его использования для сварки нецелесообразна.

Для очистки газа от других примесей (кроме азота) на заводах-потребителях газа строят специальную очистительную установку, схема устройства которой (фиг. 58) следующая: аргон из баллона 1, пройдя редуктор 2, поступает в печь 3, заполненную медной стружкой, а отсюда в сосуды 4, заполненные кусками едкого кали. В этих сосудах поглощаются углекислый газ и влага. Окончательная, более полная осушка аргона, происходит в сосуде 5, наполненном порошкообразным фосфорным ангидридом вперемежку с фарфоровым или стеклянным боем (для предупреждения спекания фосфорного ангидрида).

В печи 3 при 650-700° С происходит поглощение кислорода медью. Температура печи контролируется посредством термопары 6, соединенной с гальванометром 7.

Температура для печи выбрана на основе следующих экспериментов. Аргон с примесью 0,6% кислорода пропускали с постоянной скоростью (12 л/мин) через установку при различной температуре печи. Газовым анализом проверяли остаток кислорода в аргоне на выходе из установки. Результаты экспериментов приведены в табл. 15.

Таблица 15. Влияние температуры нагрева печи на эффективность очистки аргона от кислорода (скорость истечения аргона 12 л/мин):

Медную стружку необходимо периодически восстанавливать по мере ее окисления. Для этого печь подвергают регенерации продуванием водородом.

Конструктивно очистительная установка (фиг. 59, а и б) выполнена так. На легкой тележке 1 укреплены печь 2, сосуды 3 и 4 и гальванометр 5.

Печь (фиг. 60) установки включает сосуд 1 из тонкой нержавеющей стали, заполняемой медной стружкой; сосуд на концах закрывается фланцами 6 и 7. Во фланце 6 имеется трубка 2 для установки термопары. Герметизация осуществляется при помощи свинцовых прокладок 9. Фланцы прижимаются к торцам сосуда 1 при помощи хомутов. 8. На сосуд 1 устанавливается каркас 3 с нихромовой обмоткой 4, служащей для нагрева сосуда 1 с медной стружкой. Теплоизоляционный кожух 5 служит для уменьшения наружного теплоотвода. Чтобы не допустить расплавления свинцовых прокладок 9, фланцы 6 и 7 охлаждают водой.

Сосуд (фиг. 61) для заполнения едким кали или едким натром и фосфорным ангидридом 2 состоит из корпуса 1, в который устанавливаются корзинки 2 и 5. Корзинка 2 в трех сосудах заполняется доверху кусками едкого кали грануляции 20 X 20, а в

четвертом — порошкообразным фосфорным ангидридом, засыпанным вперемежку с фарфоровым, мраморным или стеклянным боем. Корзинка опирается бортом на кольцо 3. Между кольцом 3 и бортом корзинки укладывается резиновое уплотнительное кольцо 4. Корзинка 5 заполняется доверху стеклянной ватой. Между корзинками 2 и 5 также укладывается резиновое уплотнительное кольцо. На корзинку устанавливается пружина 8. Крышка 6 прижимается к торцу сосуда шестью шарнирными болтами 7 с высокими гайками.

Для герметизации служит резиновое уплотнительное кольцо 9. Крышка при прижатии ее болтами 7 передает усилие через пружину 8 на корзинки 5 и 2. При этом обеспечивается герметичность в местах, соприкасания бортов корзинок и кольца 3.

Автор: Администрация Общая оценка статьи: Опубликовано: 2012.09.12

Что такое аргоновая сварка

Нередко возникает потребность сварить материалы, которые при обычных видах сварки не соединяются, к примеру, алюминий, медь, титан и так далее. Поэтому, чтобы создать прочную неразъемную конструкцию из этих металлов, применяется сварка аргоном. Что такое аргонная сварка, как она работает? На эти и другие вопросы ответы в этой статье.

Особенности аргонной с варки

Процесс – аргонодуговая сварка происходит в среде инертного газа аргона, отсюда и название сварочного процесса. Использование аргона в сварке при соединении двух металлов – это защита от окисления, которая может произойти за счет соприкосновения с кислородом в воздухе. То есть, аргон покрывает зону сварки и не дает кислороду проникнуть в зону сопрягаемых поверхностей.

Сам режим сварки может производиться ручным способом, полуавтоматическим и автоматическим. Существует классификация режимов, которые зависят именно от вышеописанных способов и вида электрода, участвующего в процессе сварки. Два вида электродов: плавящийся и неплавящийся. Ко второму виду относится вольфрамовая проволока, с помощью которой можно гарантировать прочное и надежное соединение двух металлов, даже разнородных.

Итак, классификация режимов сварки аргонодуговой:

  • Ручная сварка аргоном, где используется неплавящийся электрод – его маркировка РАД.
  • Аргоновая сварка автоматическая, где применяется неплавящийся элемент – ААД.
  • Аргонно дуговая сварка автоматического типа, где используется плавящийся электрод – ААДП.

Техника сварки аргоном

Знание некоторых правил облегчит проведение процесса сварки аргоном и позволит добиться высокого качества сварного шва.

  • Чем длиннее сварочная дуга, тем шире шов и меньше его глубина, что снижает качество шовного соединения. Поэтому рекомендуется неплавящийся электрод держать как можно ближе к стыку свариваемых деталей.
  • Чтобы создать узкий и глубокий шов, необходимо придерживаться только продольного движения электрода и горелки. Отклонения в сторону (поперечные движения) уменьшают качество сварочного соединения. Поэтому при сварке аргоном необходима аккуратность и внимание сварщика.
  • Присадочная проволока и неплавящийся электрод должны находиться только в зоне сварки, прикрытыми аргоном. Это не даст возможности кислороду и азоту проникнуть внутрь зоны.
  • Подача присадочной проволоки должно проводиться плавно и равномерно. Резкая подача – это разбрызгивание металла в большом количестве. Процесс подачи не самый простой, все приходит с опытом.
  • Есть такой показатель – проплавленность. В аргонной сварке он определяется самим сварочным швом. Если он имеет округлую и выпуклую форму, то это говорит о низком его качестве. Проплавление поверхности было проведено недостаточно.
  • Присадочная проволока подается перед горелкой с неплавящимся электродом. К тому же ее подача производится под углом. Эти требования обеспечивают ровность сварочного шва и его небольшую ширину. Просто так удобно контролировать сам сварочный процесс.
  • Нельзя начинать и заканчивать сварку аргоном резко, потому что это открывает доступ кислорода и азота в зону сваривания. Поэтому рекомендуется сварку начинать после 15-20 секунд, как будет начата подача в стык соединения двух металлов инертного газа. И заканчивать (убирать присадочную проволоку) до того, как будет выключена горелка. На это обычно дается 7-10 секунд.
Смотрите так же:  Системные требования ram

Внимание! Заканчивать сварочный процесс нужно снижением силы тока при помощи реостата, который входит в состав сварочного аппарата. Просто отводить горелку – это значит, открыть доступ в зону сваривания азота и кислорода.

Стыки свариваемых металлических деталей перед началом работ необходимо очистить и обезжирить.

Режимы аргонной сварки

Сварка аргоном пройдет качественно, если правильно выбрать оптимальный режим проведения процесса.

  • От свойств свариваемых металлов будет зависеть выбор полярности и направления тока. Так со стальными конструкциями в аргонной сварке используется постоянный ток прямой полярности. Для сваривания алюминия или бериллия применяется постоянный ток обратной полярности.
  • Сила свариваемого тока выбирается на основе трех составляющих: диаметра используемого электрода, типа металла свариваемых деталей и их толщины, полярности. Взаимосвязь всех параметров определяется табличными значениями. Некоторые мастера выбор делают с учетом собственного опыта. Вот одна из таблиц, которая определяет режим работы аргонодуговой сварки титана.

Что такое аргоновая сварка

Нередко возникает потребность сварить материалы, которые при обычных видах сварки не соединяются, к примеру, алюминий, медь, титан и так далее. Поэтому, чтобы создать прочную неразъемную конструкцию из этих металлов, применяется сварка аргоном. Что такое аргонная сварка, как она работает? На эти и другие вопросы ответы в этой статье.

Особенности аргонной с варки

Процесс – аргонодуговая сварка происходит в среде инертного газа аргона, отсюда и название сварочного процесса. Использование аргона в сварке при соединении двух металлов – это защита от окисления, которая может произойти за счет соприкосновения с кислородом в воздухе. То есть, аргон покрывает зону сварки и не дает кислороду проникнуть в зону сопрягаемых поверхностей.

Сам режим сварки может производиться ручным способом, полуавтоматическим и автоматическим. Существует классификация режимов, которые зависят именно от вышеописанных способов и вида электрода, участвующего в процессе сварки. Два вида электродов: плавящийся и неплавящийся. Ко второму виду относится вольфрамовая проволока, с помощью которой можно гарантировать прочное и надежное соединение двух металлов, даже разнородных.

Итак, классификация режимов сварки аргонодуговой:

  • Ручная сварка аргоном, где используется неплавящийся электрод – его маркировка РАД.
  • Аргоновая сварка автоматическая, где применяется неплавящийся элемент – ААД.
  • Аргонно дуговая сварка автоматического типа, где используется плавящийся электрод – ААДП.

Техника сварки аргоном

Знание некоторых правил облегчит проведение процесса сварки аргоном и позволит добиться высокого качества сварного шва.

  • Чем длиннее сварочная дуга, тем шире шов и меньше его глубина, что снижает качество шовного соединения. Поэтому рекомендуется неплавящийся электрод держать как можно ближе к стыку свариваемых деталей.
  • Чтобы создать узкий и глубокий шов, необходимо придерживаться только продольного движения электрода и горелки. Отклонения в сторону (поперечные движения) уменьшают качество сварочного соединения. Поэтому при сварке аргоном необходима аккуратность и внимание сварщика.
  • Присадочная проволока и неплавящийся электрод должны находиться только в зоне сварки, прикрытыми аргоном. Это не даст возможности кислороду и азоту проникнуть внутрь зоны.
  • Подача присадочной проволоки должно проводиться плавно и равномерно. Резкая подача – это разбрызгивание металла в большом количестве. Процесс подачи не самый простой, все приходит с опытом.
  • Есть такой показатель – проплавленность. В аргонной сварке он определяется самим сварочным швом. Если он имеет округлую и выпуклую форму, то это говорит о низком его качестве. Проплавление поверхности было проведено недостаточно.
  • Присадочная проволока подается перед горелкой с неплавящимся электродом. К тому же ее подача производится под углом. Эти требования обеспечивают ровность сварочного шва и его небольшую ширину. Просто так удобно контролировать сам сварочный процесс.
  • Нельзя начинать и заканчивать сварку аргоном резко, потому что это открывает доступ кислорода и азота в зону сваривания. Поэтому рекомендуется сварку начинать после 15-20 секунд, как будет начата подача в стык соединения двух металлов инертного газа. И заканчивать (убирать присадочную проволоку) до того, как будет выключена горелка. На это обычно дается 7-10 секунд.

Внимание! Заканчивать сварочный процесс нужно снижением силы тока при помощи реостата, который входит в состав сварочного аппарата. Просто отводить горелку – это значит, открыть доступ в зону сваривания азота и кислорода.

Стыки свариваемых металлических деталей перед началом работ необходимо очистить и обезжирить.

Режимы аргонной сварки

Сварка аргоном пройдет качественно, если правильно выбрать оптимальный режим проведения процесса.

  • От свойств свариваемых металлов будет зависеть выбор полярности и направления тока. Так со стальными конструкциями в аргонной сварке используется постоянный ток прямой полярности. Для сваривания алюминия или бериллия применяется постоянный ток обратной полярности.
  • Сила свариваемого тока выбирается на основе трех составляющих: диаметра используемого электрода, типа металла свариваемых деталей и их толщины, полярности. Взаимосвязь всех параметров определяется табличными значениями. Некоторые мастера выбор делают с учетом собственного опыта. Вот одна из таблиц, которая определяет режим работы аргонодуговой сварки титана.

Аргонная сварка (аргонодуговая) — технология и оборудование

Аргонная сварка — один из наиболее востребованных видов современной сварки. Чаще всего, данную технологию используют применительно к алюминию, а также изделий из него.

Оптимальным методом, таким образом, аргонная сварка считается именно для алюминия. Общеизвестно, что вышеуказанный материал довольно капризен и во время контакта с кислородом, и при нагревании.

В последнем случае — его поверхность склонна покрываться тоненькой пленкой. Нюанс в том, что аргон характеризуется такими свойствами (химическими), которые практически исключают контакт с частичками кислорода нагретого металла.

Это возможно благодаря оттеснению аргоном своим давлением кислорода.

Схема аргонной сварки

Кроме этого, методику аргонодуговой сварки применяют и при сваривании иных металлов: чугуна и титана, стали и меди, а также некоторых иных, включая серебро, золото и т.д.

Популярность, которой пользуется сегодня аргонодуговая сварка, легко объяснима:

  • Во-первых, это высокое качество.
  • Во-вторых, немалая долговечность.
  • Третий безусловный плюс — доступность аппаратов для проведения сварочных работ.

Уточним, во время работы с надежным оборудованием, шов получается фактически невидимым.

Данная особенность собственно и играет немаловажную роль не только для внешнего вида получаемого изделия, но, в первую очередь, для его прочности.

Аргонная сварка незаменима тогда, когда необходимо сварить трудно соединяемые металлы.

Ценность подобной методики, прежде всего, в опыте и качестве, а также в экономии. Причем последнее возможно в самых разных сферах. Экономятся не только деньги, но и усилия, а также нервы, что согласитесь также очень важно.

Технология аргонной сварки

В быту аргонную сварку мы чаще всего можем встретить при ремонте дисков любимой ласточки.

Аргонная сварка дисков, при устранении небольших трещин на данной детали, является попросту — незаменимой (безусловно, выполненная на профессиональном оснащении при применении инновационных высококачественных материалов).

Технология аргонной сварки не имеет практически ничего общего с таким устройством как паяльник. Основной элемент горелки — вольфрамовый электрод. Поясним, вольфрам является исключительно тугоплавким металлом.

Плавление его начинается при 3410°С, а кипение — при 5900°С. Уникальность данного металла в том, что даже раскаленный докрасна, он также тверд. Во время сварки вольфрама требуется ничтожно малое количество (на 1 метр сварного шва — сотые доли грамма).

Если рассматривать в данном аспекте вольфрамовые электроды, которые легированы оксидами редкоземельных элементов, то они отличаются еще большей стойкостью.

Сегодня, рынок предлагает электроды из вольфрама, обладающие широчайшим диапазоном химсостава.

К примеру, не секрет, что в чистый вольфрам с целью улучшения сварочно-технологических и сварочных характеристик добавляют разные окислы редкоземельных металлов.

Это может быть и церий, и лантан, и иттрий, и торий, и цирконий. Какой бы не был выбран электрод, он, как правило, окружается керамическим соплом, а при сварке из него выдувается аргон (инертный газ).

Уточним, что первые попытки сварить алюминий без участия аргона, заканчивались тем, что металл начинал гореть, покрывался окислением, а электродуга немедленно прерывалась.

Чего же смогли добиться изобретатели, и что представляет аргонная сварка алюминия на сегодняшний день?

Упрощенно процесс выглядит таким образом. Сначала на деталь посредством спецоборудования (сварочного аппарата) подают «массу», так же как и при обычной электросварке.

Аргонодуговая сварка неплавящимся электродом происходит следующим способом: «масса» подается на свариваемую деталь подобно обычной электросварке.

Сварщик, если подразумевается ручная аргонодуговая сварка, в правой руке держит горелку, а в левой — проволоку (присадку).

Процесс аргонной сварки — схема

При сварке алюминия, естественно, берется алюминиевый аналог или же специальные сплавы. Включается горелка нажатием кнопки, далее подается ток и газ.

Меж кончиком электрода (неплавящегося) и деталью возникает электродуга. Она и исполняет роль основного инструмента, и деталь плавит, и присадочную проволоку.

Собственно она оплавляет и край необходимой детали, и присадочную проволоку, тем самым, формируя сварочный шов. По сути, после окончания работы 2 половины детали превращаются в одно целое.

Смотрите так же:  Возражение на исковое заявление о восстановлении на работе за прогул

Как работает аргонная сварка понятно и, на первый взгляд, в ней нет ничего сложного. Технология давно взята на поток, а эффективность ее давно доказана. Но это лишь на первый взгляд.

Проведение аргонной сварки требует опытного сварщика и надежного аппарата, как с хорошей производительностью, так и с превосходными характеристиками.

Времени для того, чтобы набить руку в данном деле потребуется также немало.

При сварке в защитных газах плавлением в роли основного инструмента применяют мощную электрическую дугу.

Электроэнергия в дуге преобразуется в тепловую. В атмосферных условиях зона сварки обязана быть надежно защищенной от насыщения металла шва азотом и кислородом воздуха.

Защитные газы, которые подаются через сопло, вытесняют воздух и защищают, таким образом, сварочную ванну и электрод.

Заполнение зазора между объединяемыми кромками (при разделке кромок) в зону плавления осуществляет присадка для аргонной сварки либо электродная проволока.

Принцип работы аргонной сварки неплавящимся вольфрамовым электродом в защитном газе.

Именно он не дает алюминию гореть. Место сварки и защищает аргон.

Аргонная сварка является гибридом электро- и газовой сварки. От первой она получила электродугу, а от газовой – схожую методику работы сварщика.

Далее рассмотрим, какое же оборудование и сварочные аппараты предполагает гост аргонодуговой сварки.

Оборудование и сварочные аппараты

ГОСТ под номером 5.917-71 предполагает выпуск для аргонной сварки неплавящимся электродом промышленностью горелок вида РГА-150 с массой в 0,35 кг на наибольший сварочный ток 200А с естественным охлаждением для аналогов с Ш 0,8-3,0 мм.

Он же предполагает выпуск горелок РГА-400 на наибольший сварочный ток 500А с массой в 0,625 кг с водяным охлаждением для электродов с Ш в 4,0—6,0 мм. Имеются требования и по поводу керамических сопел для подобной сварки.

Напомним, керамическое сопло для аргонодуговой сварки представляет собой, так называемую расходуемую часть горелки, отвечающую за качество процесса газовой защиты (местной).

По форме различают такие разновидности сопел, как цилиндрические, конические, а также профилированные. Не секрет, что чем больше керамическое сопло, тем наилучшую защиту оно способно обеспечить.

Обычно при работе в помещении используют цилиндрические либо конические аналоги, а вот при работе на открытом воздухе применяют профилированные либо цилиндрические модели сопел с более крупным диаметром отверстия (выходного).

Отметим, что сопла удлиненные применяют, как правило, в труднодоступных местах.

Виды оборудования

Уточним, аргонную сварку, в зависимости от уровня механизации, подразделяют на несколько видов:

  • ручную;
  • механизированную;
  • автоматизированную;
  • роботизированную.

Соответственно разным будет и оборудование для аргонной сварки и, конечно, стоимость аргонной сварки.

Разновидности оборудования по видам

При ручной сварке , и перемещается горелка для аргонодуговой сварки, и подается сварочная проволока самим сварщиком, а сварные работы осуществляют, применяя вольфрамовые электроды (неплавящиеся).

При механизированном виде горелку держит сварщик, а вот проволоку — присадочные прутки для аргонодуговой сварки подают уже механизировано.

При автоматизированном виде , и перемещение горелки, и подача проволоки полностью механизирована. Здесь уже присутствует не сварщик, а оператор.

Последний не нужен, если применяется роботизированное оборудование для аргонодуговой сварки

Сварочные аппараты

Рассмотрим оборудование, а точнее сварочные аппараты для аргонодуговой сварки, которые используются при выполнении работ в инертных газах.

Их подразделяют на:

  • специальное;
  • универсальное;
  • специализированное оснащение.

Если рассматривать универсальный сварочный аппарат для аргонной сварки, то он выпускается серийно и наиболее востребован потребителями.

Инверторный сварочный аппарат для аргонной сварки

Подобную сварку в большинстве случаев выполняют в производственных условиях на специально оснащенных рабочих местах, именуемых «сварочными постами».

Установки с применением вольфрамового неплавящегося электрода в среде аргона оборудуют такими элементами:

  • источником тока — постоянного/переменного;
  • горелкой либо комплектом последних, предназначенных для работы с разными токами;
  • устройством, которое обеспечивает начальное возбуждение дуги либо стабилизирующим дугу тока (переменного);
  • аппаратурой, управляющей сварочным циклом, а также его защитой;
  • устройством для компенсации или регулирования постоянной составляющей тока.

На сегодня, известны и новые методы аргонной сварки, которые создавались с целью расширения диапазона толщины свариваемых материалов, повышения производительности при получении неразъемных соединений, а также для улучшения провара.

Инновационными считаются нынче работы пульсирующим током. При импульсе тока металл расплавляется, во время паузы кристаллизуясь.

Дуга с постоянной скоростью либо шагами перемещается, и эти перемещения синхронизируются с импульсами тока (сварочного).

Вместе с этим обеспечивается и действенное проплавление во всех без исключения положениях (пространственных), нечувствительность к небольшим недочетам, которые допустимы при сборке.

Такое снижение тока не допускает перегрева металла, и потому деформации в итоге практически исключаются.

Используется и подогрев проволоки (присадочной). Уточним, данная методика значимо влияет на производительность и потому купить аппарат аргонной сварки, использующий подобное усовершенствование — мечта многих.

Довольно эффективным способом получения швов без подреза при высоких скоростях сварки металла считают одновременное применение сразу нескольких электродов из вольфрама.

Ничего особенного для осуществления данных разновидностей процесса не нужно. Требуется всего лишь стандартное оборудование для аргонной сварки и так называемые дополнительные блоки.

Самым востребованным устройством для аргонной сварки, которое успешно применяется и на производстве, и в быту, выступает инверторный аппарат.

Отметим, что цена аппарата аргонной сварки относительно невелика, в отличие от услуг профессиональных сварщиков-аргонщиков.

Потому применение подобного инвертора — оптимальный вариант, т.к. разобраться с его принципом работы может и начинающий сварщик, а при необходимости часто проводить сварочные работы подобного типа гораздо выгоднее освоить все премудрости данного процесса своими силами.

Делаем своими руками

Чуть выше мы выяснили, что аргонная сварка своими руками – это выгодно и вполне возможно. Рассмотрим, что же представляет собой схема аргонной сварки своими руками.

Если приобретен инверторный сварочный аппарат либо трансформаторный аналог для аргонной сварки, то составить полный комплект можно посредством:

  • горелки;
  • баллона с аргоном;
  • редуктора и клапана газа;
  • сварочной маски.

Аргонная сварка своими силами предполагает, и знание основных правил, которые необходимо соблюдать при использовании инертного газа — аргона.

При применении неплавящегося электрода, его нужно держать по возможности ближе к поверхности конструкции, которая варится. Это позволяет получать дугу с минимальными параметрами.

Помните, что увеличение дуги, как правило, приводит к снижению глубины проплава и соответственно росту ширины шва. В свою очередь это приводит к значительному снижению качества соединений (сварных).

Выполняя аргонную сварку, нужно постараться совершить всего лишь одно единственное движение вдоль шва. Перпендикулярные шву перемещения в данном случае крайне нежелательны.

Если все выполняется верно, то в итоге получаем и эстетичное, и прочное соединение. В этом, собственно и кроется качественное отличие данной технологии от сварки электродами покрытыми.

Важным условием хорошей сварки является контроль за тем, чтобы сам электрод, а также присадочная проволока ни в коем случае не выходили за границы газовой защитной зоны.

Желательна плавная подача проволоки, в первую очередь, для того, чтобы избежать разбрызгивания металла.

Проволоку при работе с вольфрамовым электродом подают впереди горелки. Напомним, поперечные колебания не допустимы.

Заварку кратера при окончании работы производят при понижении силы тока посредством реостата. Не допустимо завершать процесс сварки обрывом дуги, попросту отводя горелку.

Такой прием снизит защиту шва. Подача газа может быть прекращена лишь через 10 секунд после завершения сварочных работ.

Если говорить о начале подаче газа, то временной период составляет, как минимум 20 секунд до начала выполнения работ.

Следует помнить и о том, что перед началом работ, все поверхности свариваемых конструкций обязательно очищают и от жира, и от грязи посредством механических (химических) методов, а также проводят обезжиривание.

Цены на услуги и оборудование

Услуги аргонной сварки (профессиональные) сегодня совсем не дешевы. Что говорить, если цена за сантиметр аргонной сварки колеблется в диапазоне от 25 и до 100 рублей (все зависит от мастерства сварщика, качества оборудования и нюансов предполагаемой работы).

Потому, такое решение, как купить аргонную сварку — вполне объяснимо. Тем паче, если человек настроен решительно и многое в этой жизни делает собственными руками…

Цена аргонной сварки, само собой, зависит от того, по какой именно технологии она будет производиться, и какому именно мастеру вы доверите, несомненно, ответственное мероприятие.

Так, к примеру, для того чтобы максимально удешевить данный процесс наиболее рациональным решением будет купить аргонную сварку для алюминия.

Хотя, справедливости ради, стоит заметить, что с экономической точки зрения подобный выбор оправдан лишь в одном случае — если необходимость производить сварку у вас возникает действительно часто.

В противном случае цена аргонодуговой сварки для вас более доступной будет (при единоразовой необходимости), если вы поручите ее профессионалу.

Аргон для сварки требования